Diffusion MRI Processing and Analysis
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Overview
I

 What is Diffusion? Diffusion-weighting in MRl 24 23RE? MRIFAIHT BN
e Diffusion Tensor Model and DTI ¥ BEkE&EELFDTI

e Tract-Based Diffusion analysis (TBSS) #“F#=EkRD#T (TBSS)

e Distortion Correction for Diffusion MRl # 8IMRIFEGZ R 1E




Diffusion - Brownian Motion
8- R ERIEEh

Molecules are in constant motion at non-

zero absolute temperatures (> -273° C)
D FEIERENRE NMTELITE)

Robert Brown (1773-1858)

Diffusion = thermally-driven random motion
SR =AIR N FEALIE R



Diffusion - Brownian Motion
¥ 8X-fhBA1=E

How can we describe this motion?
BRI ZEBE LB XMiEEhle?
For an ensemble of molecules, In n-dimensional

space 3 F iz 8 R 4>

< 22 >=2nDt

VN

Albert E|nste|n (1879 1955) mean squared o
displacement Diffusion
coefficient

Valid for a homogeneous,
barrier-free medium.
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Water Diffusion in the Brain. Why is it Interesting?

Free Diffusion

Isotropic




Water Diffusion in the Brain. Why is it Interesting?

Free Diffusion

Isotropic

Diffusion in GM

Isotropic




Water Diffusion in the Brain. Why is it Interesting?

Free Diffusion Diffusion in GM Diffusion in WM

Isotropic Isotropic Anisotropic

_ terminus
restricted

froe diffusion

cell body diffusion

(myelinated)

Diffusion is restricted by tissue boundaries, membranes, etc.
Marker for tissue microstructure (healthy and pathology)
Diffusion is anisotropic in white matter [Beaulieu, NMR Biomed, 2002]



Apparent Diffusion &34

Free Diffusion

Time

Restricted Diffusion

Barrier

-

\4 v

“Looks” like “Doesn’t look” like
free diffusion free diffusion

Observed diffusion in tissues depends on the experiment = “Apparent diffusion” &
“Apparent diffusion coefficient” (ADC)

AR R BN BUHUR T-3850 ="K Y 5
“RIT HRE (ADC)




Measuring Diffusion with MRI:
IMRIENEY 8: Diffusion MRI (dMRI)

Pulsed-Gradient Spin-Echo Sequence: ks a ek F5:
To achieve diffusion-weighting along a direction x, apply strong
magnetic field gradients along X. 5 7:8x5mTImy 804, SBxFEIMBHIAHE.

90 180
G G
Diffusion Time t yea\c!l
Y BRETE) ¢

If particles diffuse along x during the allowed time (DiffTime), a signal

attenuation is observed, compared to the signal with G=0.
MERKFERVERIE (DiffTime) HAEDExH &Y, NIS5G =0RYES1ELL, MWREEFSRHME.

[Stejskal & Tanner, 19695]



Measuring Diffusion with MRI:
IMRIENEY 8: Diffusion MRI (dMRI)

Pulsed-Gradient Spin-Echo Sequence: ks a ek F5:
To achieve diffusion-weighting along a direction x, apply strong
magnetic field gradients along X. 7 :8x5ESTMY BN, SBXFEIMRHIBHEE.

90 180
G G A
Diffusion Time t yea\ll
Y BRETE) ¢

_ 2
D ~2.4um%ms g x=\ 6Dt ~27um

t~50ms /

st. deviation of displacements
(VEEAITS [Stejskal & Tanner, 1965]



Measuring Diffusion with MRI: Diffusion-

Weighted Imaging (DWI)
{EAMRINEY B ¥ 8IS (DWI)

T2w Image
No Diffusion-weighting Diffusion-weighted
T2 04X E Image
AT BN SREUINAR E 1%
(G=0)

So S

Removes T2w contrast
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Measuring Diffusion with MRI: Diffusion-

Weighted Imaging (DWI)
{EAMRINEY B ¥ 8IS (DWI)

Diffusion contrast can be modulated by:##sdttrri@E A T A KBTS

A) Diffusion weighting: Gradient strength, Diffusion time
¥t #ERE, ¥ EEdE

b value ~ G2. DiffTime (units in s/mm?2)




Measuring Diffusion with MRI: Diffusion-

Weighted Imaging (DWI)
{EAMRINEY B ¥ 8IS (DWI)

Diffusion contrast can be modulated by:##sdttrri@E A T A KBTS

A) Diffusion weighting: Gradient strength, Diffusion time
¥t #ERE, ¥ EEdE

b value ~ G2. DiffTime (units in s/mm?2)

b=0 b=300 b=1000 b=2000 b=3000

More diffusion contrast with higher b :)
...But less signal left - exponential decay :(
bESHY B LEE
BRI TRIESELD - FEERE



Measuring Diffusion with MRI: Diffusion-

Weighted Imaging (DWI)
{EAMRINEY 88 ¥ 8N (DWI)

Diffusion contrast can be modulated by  ##ssttrii@E AT A=K ET
B) Gradient Direction XEIEE 5 8]

b=1000 b=1000 b=1000 b=1000

A




Measuring Diffusion with MRI: Diffusion-

Weighted Imaging (DWI)
{EAMRINEY 88 ¥ 8N (DWI)

Diffusion contrast can be modulated by  ##ssttrii@E AT A=K ET
B) Gradient Direction XEIEE 5 8]

b=1000 b=1000 b=1000 b=1000

A

............................




A Typical dMRI Protocol ##gdvrisE

 Normally a few (at least one) b=0 volumes acquired, along with
shells at higher b (~1000 s/mm2).
BEIRE—L (ED—1) b=0%M, MUKESDb (~1000s /mm2) K7
» Ashell is a set of volumes acquired with the same b-value, but
different gradient orientation
e {ERBEbEERERIEEF mIRENRI—H 2 /X / Signal with b=0
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A Typical dMRI Protocol sa#gdvrizEz

 Normally a few (at least one) b=0 volumes acquired, along with
shells at higher b (~1000 s/mm2).
BEIRE—L (ED—1) b=0%M, MUKESDb (~1000s /mm2) K7
» Ashell is a set of volumes acquired with the same b-value, but
different gradient orientation
e {ERBEbEERERIEEF mIRENRI—H 2 /X / Signal with b=0

900} A
% 700 H CSF
= 600 _).(_; <3
= B relates to ADC
_% 400f, EADCﬁ%
N 300
1007L\J\/\/—w—vj LWM\/‘—M A\

L L L L L L
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Volumes

; n White matter
. 160 E}ﬁ
?ZZ \J\WJJ\/V\ J\N\/\/\/\/\/\/ 1 relates to anisotropy
%m\ 5& MR %X
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dMRI Summary E45

Images acquired with a Gradient along x, have
contrast that is sensitive to diffusion of water

molecules along x.
SHEXNEEIRFINERREE XKD F BB BEURIIX LEE

When diffusion occurs, signal is attenuated compared

to the one with no diffusion-weighting.
SRET 8, SAET BIIXNESHEL, E5RE.

In WM, measurements are anisotropic.
EBARED, NEREERIEMN.,

In GM and CSF, measurements are roughly isotropic.
ERFAENRERP, MWEANESZMEER,



Diffusion Tensor Imaging - basic principles
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Diffusion in brain tissues 443485
Apparent Diffusion Coefficient R 8 %%
Diffusion Tensor model ¥ gk S5
Tensor-derived measures KESHHES



Diffusion Tensor Imaging (DTI)
IREGRE AR

Diffusion Tensor Model. In each voxel:
V Bk=ERE, A8 MMREH:

%gﬁ;ﬂ%ﬁ b-value for gradient j Unit vector representing the

(known) direction of gradient j (known)

\ / / RRBE S ANBAIaE (E4)
S] SO eXp( b XJTD x])
7 \

Signal measured after applying 3x3 Diffusion Tensor (unknown)
a Gradient j with direction x; and el e
b-value bj(measured) : - 3x3Y HGKE (KA

Signal measured with no
diffusion gradient applied

NAAEAEXHMbED (NE) BERNENES NEES, RENY sEE

[Basser, Biophys J,1994], [Basser et al , J Magn Res, 1994]



The Elements of the Diffusion Tensor

2.10-3
mm?2/s

T EERENER - -
D XX D Xy D Xz
D - ny D)’)’ D)’Z
XZ D vz D 2Z

-2.10-3
mm?2/s

- Tensor is symmetric (6 unknowns)

SKEEXIMEY (67T ARFE)

- Diagonal Elements are proportional to
the diffusion displacement variances
(ADCs) along the three directions of the
experiment coordinate system

NAETRS ALRLIRARN=T @AY
Bu% 5 ZE (ADC) BEEH]

-Off-diagonal Elements are
proportional to the correlations
(covariances) of displacements along
these directions

I ABLETES IHXES DINUBNEX S
(h7HZE) BLEsl

N3 (0, 2tD)



Why do we need a tensor?
N LBANFTEERKE?
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Why do we need a tensor?
AT A2 BATFERKE?
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The Diffusion Tensor Eigenspectrum
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SREGKE TS

Once D is estimated, we get ADCs along the
scanner’s coordinate system. But we want
ADCs along a local coordinate system in each

voxel, determined by the anatomy. —Bp#®it, #®
MR LUEERIE N LT R BEIADC, BEIIFEADCEEE A
REER IR, HBESIZRE
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The Diffusion Tensor Eigenspectrum
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Xy Yy Yz

AV1

7\2V2

SREGKE TS

Once D is estimated, we get ADCs along the
scanner’s coordinate system. But we want
ADCs along a local coordinate system in each

voxel, determined by the anatomy. —Bp#®it, #®
MR LUEERIE N LT R BEIADC, BEIIFEADCEEE A
REER IR, HBESIZRE

N

Diagonalize the estimated tensor in each voxel
NALETMMEFNGITKSE

. A0 0
D = |[vy|va|vs] 0 A2 0 | [vi|va|vs]

0 0 A \

\ eigenvectors - vi=direction of
max diffusivity

eigenvalues: ADCs along v1,v2,v3 HEIT S (B vI= R AT RIS [
FE: 3B v1, v2. v3 g ADC




The Diffusion Tensor Ellipsoid
T Bk EEEK

|sotropic voxel Anisotropic voxel
FaENE AR FEFEARER

A1 > Ap, A
/\1%/\2%/\3 o 2

Vl\/ZTﬂl
V2 vV 2‘['/\2
Vz\/ 2T/\2

V3 v ZTX;),
V3 v/ 2TX3




ST The Diffusion Tensor Ellipsoid
=¥ I BEKk B IR

CSF Grey matter
fnE R R o

White matter
=)

White matter
=}



Quantitative Diffusion Maps & #E

Fractional Anisotropy (FA) ~ Eigenvalues Variance (normalised)
Mean Diffusivity (MD) = Eigenvalues Mean
DEZEAEE (FA) ~FEERZE (JF—1)
Y EE (MD) =4FHEIE

FA — =1 , FA in [0,1]

MD — Dxx‘l‘[;yy+Dzz _ )\1+/§))2‘|‘)\3




Quantitative Diffusion Maps =2 #

Different scenarios can have same effect on FA, MD
AREIIZ e AISFA, MDA HERNT

Myelin

Swelling Density Loss




Diffusion Tensor Ellipsoids
Bk EWER

DESEFE
Fractional anisotropy

Mean diffusion ¥Fi3J3RH




Estimates of Principal Fibre Orientation in WM
WMAR EZ A ARG EE

V1 map
Principal Diffusion Direction
Y EAE Principal Diffusion
‘ e Direction
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Direction of maximum
diffusivity in voxels with
anisotropic profile is an
estimate of the major fibre
orientation.

BB O EERIAE
PRIERAY 8RR EE
£ EAF AR @AIEIT,



Estimates of Principa
WMF

H =

Fibre Orientation in WM

BT 2 HY

O

1Y HE

ERRIEAVIHEE

Colour-coded v1 map




Estimates of Principle Fibre Orientation in WM
WMARRIBA AR @i {E &

Corpus callosum-?
‘ :Slafeviov occiptofrontal !ascicu_lgé:)

Arcuate fibers
Anterior limb of

internal capsule

——
—~—

"Superlor longitudinal fasciculus)

(arcuate) '___/

R

Superficial part of arcuate

Caudate nucleus — 2= Inferior occipitofroatal fasclw@

\—-—‘——— —
Uncinate fasciculus )
S

Lentiform nucleus — N

Arcuate fibers

Amygdaloid nucleus




Directional contrast in DT
DTIFAY A @ EL

T1-weighted



TBSS : Tract-Based Spatial Statistics

TBSS: EHA

-ARAHRERNZ BT DM

Robust “voxelwise” cross-subject stats
on diffusion-derived measures

It BE T ARERENT BT hA




VBM-style Analysis of FA zxvemurasnin

* VBM [Ashburner 2000, Good 2001 ]

* Align all subjects’ data to standard space mamitEzIFE=E
* Segment -> grey matter segmentation 5 zl-xEHE

* Smooth GM nmw8

* Do voxelwise stats (e.g. controls-patients) =gt

* VBM on FA [Rugg-Gunn 2001, Buchel 2004, Simon 2005]
* Like VBM but no segmentation needed gvem—ErEEs 2

g " s |
- ) '
Y } £
” "f-ﬁ/\. : \
7 :

< ? 12 mm

Buchel 2004

I e Jones 2005




VBM-style Analysis of FA =Fvemgrasir

 Strengths =
* Fully automated & quick 2@z
* Investigates whole brain s

* Problems [Bookstein 2001, Davatzikos 2004, Jones 2005] s

e Alignment difficult; smallest systematic shifts between groups can be incorrectly
interpreted as FA change
XI55 X 4H 18] /I R LR AS Pl B TR IR R R O FASS AL

e Needs smoothing to help with registration problems FZE ;8 3 f# R Ec /o) &

* No objective way to choose smoothing extent ;R EE W5 ERKIX IR T BIZE




Hand-placed voxel/ROIl-based FA Comparison
E T F e RIARZE/ROI FA LB

. -
» o . ﬂ

labour-intensive, subjective, potentially inaccurate, doesn’t investigate whole brain

Ho)ZRE, TNy, AJREAER, AESREDTKW




Tractography-Based FA Comparison fFERarALLix

Anterior

Posterior

* Method [Gong 2005, Corouge 2006] 3%

e Define a given tract in all subjects {RIBFFAEHINE X — 4R
e Parameterise FA along tract SEEFHTRS ELFA

e Compare between subjects #ifE b

* Strength: correspondence issue hopefully resolved fi5: @igiama #LEm@R

* Problems (g
e Currently requires manual intervention to specify tract BaIEEA L TFFRIEELFHR
®* Hence doesn’t investigate whole brain FHLttA~ZEEE KN

e Projection of FA onto tract needs careful thought FATEZAFER FIIRSIEE(FMERE



TBSS : Tract-Based Spatial Statistics
AT ARAHRERNZ BRI O

Need: robust “voxelwise” cross-subject stats on DTI

FE: DTIHEAE T RER" MBI IE T EURE

Problem: alighment issues confound valid local stats

B XTI RIREE R RIGTITEE

TBSS: solve alignment using alignment-invariant features:
TBSS: {ERX 7T AEHRHERRIRXITT:

Compare FA taken from tract centres (via skeletonisation)

EEEM AT R EVSRIFA (BT & ER1L)



|. Use medium-DoF nonlinear reg to pre-align all subjects’ FA
(nonlinear reg: FNIRT)

{ERA0- B HE RS T B /BTN ST /BT B 21l FRIFA
(FZ% B/ FNIRT)




2. Skeletonise” Mean FA =z

tract perpendicular direction

centre of voxel of interest

local FA centre—of -gravity




3. Threshold Mean FA Skeleton B{&E15{EFAS 28

giving “objective” tract map 5 “E XA 4R [E]




3. Threshold Mean FA Skeleton F{&{EFARE 28

giving “objective” tract map 5 H“E W BT HE R [E]

G g

|
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4. For each subject’s warped FA, fill each point on the mean-space
skeleton with nearest maximum FA value (i.e., from the centre of
the subject’s nearby tract)
NTFEITZUENHBFA, ARZENSEAFAE (B, M2 ERIMT X
i) HB YT E TR NS S,




5. Do cross-subject voxelwise stats on skeleton-projected FA
and Threshold, (e.g., permutation testing, including multiple

comparison correction)
B STRIFA L 1T B E ST

MEE, (Fla0, B, SESZEHERRIE)

subject 1

subject 2

. 1 B
subject 3 )
. 1
subject 4 )
subject 5 X
1
1
1
, | S
2
2
2
2
2
2
Cl & -B 1 -1
C2 B - & -1 1
1
1
1
1
1
1
1
one skeleton voxel's data vector (to be fed into GLM) C1 group mean 1 0
C2 reaction time 0 1



TFCE for TBSS

controls > schizophrenics
p<0.05 corrected for multiple comparisons across space,
using randomise

cluster-based:
cluster-forming
threshold =

2 or 3

TFCE




Schizophrenia (Mackay) /55 S

TBSS & VBM show reduced FA in corpus callosum & fornix
TBSSHIVBM &/ B AR (A1 = 2 R RIFARZ R

VBM shows spurious result in thalamus due to increased ventricles in schiz.
VBMEERMFERERER, REEschizAyOEIZI

VBM mean FA (controls) mean FA (schiz.)

'




Multiple Sclerosis (Cader, Johansen-Berg & Matthews)

2 R EHEUIE

A. CC area B. Lesions C. EDSS




TBSS - Conclusions &2

Attempting to solve correspondence/smoothing problems

1 B R 3T N/~ )8 (0]

Less ambiguity of interpretation / spurious results than VBM

SVBMABLE, ARRE/RERRGRAVE LRI

Easier to test whole brain than ROl / tractography

LEAF R R RIEIRAE S Z M BT AN

Limitations & Dangers FFR14EF1T
e Interpretation of partial volume tracts still an issue SR ZBERNAR— D&
e Crossing tracts? 445 7 [8)?

Future work R TE

e Use full tensor (for registration and test statistic)
ERTER=E (ATE/HEMZITINL)

e Use other test statistics (MD, PDD, width) #REMS it 5 A

e Multivariate stats (across voxels and/or different
diffusion measures) & discriminant (ICA, SVM)
ZHiurER (BIARM/EAE
18 E) MoRiE (ICA, SYM)




Outline of the talk x4

* What is the problem with diffusion data? # BEIBEEAlCIRR?
e Off-resonance field FERIRIT
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What is the problem with

diffusion data!?
B EUEE T4 0] @7

Well, it isn’'t very anatomically faithful
IR, XERIZ LA RERTE




What is the problem with

diffusion data!?
B EUEE T4 0] @7

In fact, it isn’t even internally consistent
IR E, EEEERBBTE—HN
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Off-resonance field = Distortions

JEHEIRIF=KE

An “off-resonance” field is
a map of the difference
between what we think the
field is and what it really is.

FRIR1FERNTIA NI
5 3EFR17 2 (8] Z= FHIAR
&Y.

It is aII caused by an “off-resonance” field
XD R B SEIR 155 | £2hY




Off-resonance field = Distortions

E

scanned In
SN this field
L7 34

But this object

So there is clearly more to this story...

R, XTHEERLTEES




Off-resonance field = Distortions

JEHEIRIF=KE

An off-resonance field is effectively a scaled voxel-displacement map.
IEHIRIH LR E B AEMAIREUZE,

If we know the imaging parameters we can do the translation.
MRBATFNERIZSEN, # el AT TR




Off-resonance field = Distortions

JEHEIRIF=KE

~ voxels

And know what to expect
FHEMESRETA

An off-resonance field is effectively a scaled voxel-displacement map.
EHIRIZ LR L B ARV RAIFZE,

If we know the imaging parameters we can do the translation.
MRBAVIIERZRSEL, Bl AHITRIRBZE R

BW/voxel = 10Hz, p = [0 1 O]
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Where does the off-resonance field come from?
E 517 5 B BRER

* There are two sources HF ¥R
* The first is the object (head) itself. £—12x% (k) %5,

(CT of) Human head CTJ)i2 Resulting field 45 R 1

VxH =0
VeB =0

Must fulﬁl{

(still)




Where does the off-resonance field come from?
E 517 5 B BRER

* There are two sources MR
* The first is the object (head) itself. 8—253% (k%) *5

* The second is caused by the diffusion gradient = 2my gaEs |2

X

Image encoding
>

>




Where does the off-resonance field come from?
E L1 17 5 B IR ER 2

So for any diffusion weighted volume the off-resonance field is the

sum of these two contributions
EE, XFEEY BN EISR, IEHRIRIZEZ XA 2@k i S5

SHiER  Susceptibility Eddy currents & Total fSEl

X vz “True” object Observed image
#%E17 Diffusion gradient ETEE I £2 3 Hy E1E




Where does the off-resonance field come from?
E L1 17 5 B IR ER 2

So for any diffusion weighted volume the off-resonance field is the

sum of these two contributions
EE, XFEEY BN EISR, IEHRIRIZEZ XA 2@k i S5

SHiER  Susceptibility Eddy currents & Total fSEl

X Y Z ) . .
True” object Observed image
#%E1% Diffusion gradient Egéé% mgﬁuﬂl\]@g




Where does the off-resonance field come from?
E 517 58 B R ER

So for any diffusion weighted volume the off-resonance field is the

sum of these two contributions
EE, XFEEY BN EISR, IEHRIRIZEZ XA 2@k i S5

SHiER  Susceptibility Eddy currents & Total fSEl

>I< \./ 2 13 11 . .
1#%E15 Diffusion gradient Trugegg%%ect Obﬂ;%‘éﬁ% ”1‘%?99




Separate estimation of susceptibility- and eddy

current-fields
REAY 5 R R T Y S T

So, what we need to estimate is
Hit, HMIFELENE

One of these per One of these per

subject volume
H A — Mg Hp—MEER

FSL-tools: topup
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How topup works (very briefly)
topupfV LEIRIE (FEEEE)

p=[0 -1 O]

Given two images acquired with different phase-encoding
L2 E M TMER A RBIEA RS IR BRI E &




How topup works (very briefly)
topupfV LEIRIE (FEEEE)

topup “guesses” a field...

topup 3&M—"11%




How topup works (very briefly)
topupfV LEIRIE (FEEEE)

...calculates the displacement maps...
AHEBE...




How topup works (very briefly)
topupfV LEIRIE (FEEEE)

.‘corrects” the images...

RIEEIG




How topup works (very briefly)
topupfV LEIRIE (FEEEE)

...and evaluates the results...

And this iIs the crucial bit.
CHIMEER XEEXEBEH—A,




How topup works (very briefly)
topupfV LEIRIE (FEEEE)

R A

better

ot

p=[0 -1 O]

Because topup can then “guess” another field
A topupAERI LA BN B —11%




How topup works (very briefly)
topupfV LEIRIE (FEEEE)

even
better

EXat

...and another...until it is happy,

and then it “knows” the field
BE—. . BRIESH, AR “ME" X115
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For all scans ¥ FErAaIT1
[M100] [6-4-7] [8.601 [-4.90]

~\

(
0.2
0.6
[ ( 0.1

| topup EC mp

Load into prediction maker
ANEEIFUN 132 25

How eddy works

iRMAY

Use susceptibility field
and current estimate of
EC and movement to
“unwarp” scan

{§ M 2 =i5H EC M BIE
iHERA R Emn#TT "IN

{EIRIE

For all scans YT FiE13#

RIS

Invert current transform

R ¥% S RIERE

Use difference

Get prediction

~\

(
0.2
L , 0.1

| topup EC mp

to update EC  Get prediction in
and mp scan space

FEHEZRKEN ERAMEEEZREFN
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Under the hood of Zoltar

ML BA R Zoltar Y 5 353K

Data point

y-component of diffusion gradient

z-component >
x-component of diffusion gradient

The signal is “modelled” in a data-driven fashion assuming that points close together

on the unit sphere have similar signal.
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Outline of the talk x4

* What is the problem with diffusion data? ¥ &&UEGETAlCER?
e Off-resonance field FERIRIT
 How does it cause distortions? e XA
* Where does it come from? E MEITmR?
e Registering diffusion data SRE EHERVEC
 How topup works topup topup¥{alE R #MmAY?
e How eddy works eddy eddysLIRIMATLE?
* Practicalities LA
e Some results —LEER
e Quality control A
* New eddy features AR INEE




HCP-data, 150 directions, b=3000, blip-up-blip-down
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MGH-data, |98 directions, b=10000!

MGH #4#E, 198 /@, b=10000!




MGH-data, |98 directions, b=10000!

MGH #4#E, 198 /@, b=10000!
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EDDY QC.: data quality summary
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EDDY QC: single-subject reports
IR T B HIIRS

Biobank subject A Biobank subject B
Volume-to-volume motion Within-volume motion Volume-to-volume motion Within-volume motion
-] Average abs. motion (mm) 10.81 ] Avg std x translation (mm)  0.02 Average abs. motion (mm) 1.86 Avg std x translation (mm) 10.08
T Average rel. motion (mm) ‘ 0.88 — Avg std y translation (mm) ‘ 0.11 Average rel. motion (mm) . 1.24 - Avg std y translation (mm) ' 0.22
T Average x translation (mm) ‘ 0.17 ' — Avg std z translation (mm) [ 0.04 Average x translation (mm) | -0.43 ' Avg std z translation (mm) ‘ 0.13
T Average y translation (mm) ‘ 0.10 _ Avg std x rotation (deg) 10.05 Average y translation (mm) 1039 Avg std x rotation (deg) ' 0.15
T Average z translation (mm) ‘ -0.02 _ Avg std y rotation (deg) 10.05 Average z translation (mm) 10.69 Avg std y rotation (deg) ‘ 0.09
T Average x rotation (deg) ‘ 0.07 — Avg std z rotation (deg) . 0.06 4 ‘ : \ Average x rotation (deqg) | 0.50 | Avg std z rotation (deg) ‘ 0.11
T Average y rotation (deg) ‘ 0.17 - - . Average y rotation (deg) | 0.49 | .
T Average z rotation (deg) ' 0.15 Average z rotation (deg) ' -0.55
~ Outliers | Outliers
| Total outliers (%)  omn Total outliers (%) 2.86
.| Outliers (b=1000 s/mm?) 0.2 ‘ Outliers (b=1000 s/mm?) 469
.| Outliers (6=2000 s/mm?) © 0.00 | Outliers (b=2000 s/mm?) 13
] Outliers (PE dir=(0. 1. 0.)) . 0.00 ‘ Outliers (PE dir=(0. 1. 0.)) ' 2.55
| Outliers (PE dir=( 0. -1. 0.)) T o | Outliers (PE dir=[ 0. -1. 0.]) T 2.66
Abs. motion Rel. motion Translations Rotations Abs. motion Rel. motion Translations Rotations
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Data quality illustration suzEmESi3H
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Qutline of the talk
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* What is the problem with diffusion data?
e Off-resonance field
* Registering diffusion data

* Practicalities

e Some results

* New eddy features
* Movement-induced dropout iEsha | s
* |ntra-volume motion




Norwegian data. 32 directions.
Hundreds of children. #misuz 32450 gE)LE

Eight year old
who gets tired
towards the end

of scanning
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replacement by
eddy
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* Registering diffusion data

* Practicalities

e Some results
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Intra-volume movement
S b

One of the (possibly naive) assumptions of most movement correction is
that any movement is instantaneous and occurs between the acquisition

of consecutive volumes.
REFIREN (FIEERRXEMN) RigZ2—=2EMEsEl2FEMNNH B RS EESMEFRAIZAEN Z
8],

This is the brain
we set out to
iImage
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that any movement is instantaneous and occurs between the acquisition
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This 1s the brain And here we have

we set out to N —— acquired the first

iImage slice




Intra-volume movement
S b

One of the (possibly naive) assumptions of most movement correction is
that any movement is instantaneous and occurs between the acquisition

of consecutive volumes.
REFIREN (FIEERRXEMN) RigZ2—=2EMEsEl2FEMNNH B RS EESMEFRAIZAEN Z
8],

But the subject moves Er#idER
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This is the brain So the brain is

we set out to X R AIBME a3 AN offset in the

image second slice




Intra-volume movement
S b

One of the (possibly naive) assumptions of most movement correction is
that any movement is instantaneous and occurs between the acquisition

of consecutive volumes.
REFIREN (FIEERRXEMN) RigZ2—=2EMEsEl2FEMNNH B RS EESMEFRAIZAEN Z
8],

But the subject moves Er#idER

ER=FEFENMRE
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This is the brain And even more so

we §et out to N —— In the third slice
iImage




Intra-volume movement
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Intra-volume movement
S b

One of the (possibly naive) assumptions of most movement correction is
that any movement is instantaneous and occurs between the acquisition

of consecutive volumes.
REFIREN (FIEERRXEMN) RigZ2—=2EMEsEl2FEMNNH B RS EESMEFRAIZAEN Z
8],

This is the brain
we set out to
iImage
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Intra-volume movement
S b

* This is known as the “slice-to-vol” problem or the “intra-volume movement” problem.
XARAR BR8] ey R R A B R o) &

* The new version of eddy addresses this problem. FikrAHeddyf R T X/ 8]

* |t estimates the slice wise movement through the same Gaussian Process based
forward model.
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Intra-volume movement
S b

Original data
[RInENE

Problematic elderly subject. Lots of movement induced signal loss

and intravolume movement
Blo@NEEAN, KEas|E(ESEXMEIEE G




Intra-volume movement
S b

Originél data After correction
without outlier

correction
FEERIER

Problematic elderly subject. Lots of movement induced signal loss

and intravolume movement
Blo@NEEAN, KEas|E(ESEXMEIEE G




Intra-volume movement
S b

Originél data After correction After correction
without outlier with outlier

correction replacement
AREEBR®RRIER

Problematic elderly subject. Lots of movement induced signal loss

and intravolume movement
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Intra-volume movement
S b

Originél data After correction After correction After intravolume
[RIGEUE without outlier with outlier movement

correction replacement correction.
2 E&REERLE

Problematic elderly subject. Lots of movement induced signal loss

and intravolume movement
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Intra-volume movement
S b

Highlighting the difference between just OLR and OLR

combined with S2V correction
LT OLRMOLRZ [BINE R A K S2VIRIE

Problematic elderly subject. Lots of movement induced signal loss

and intravolume movement
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