Inference

how surprising is your statistic! (thresholding)
NS EZIRE?  (HR)

But ...can |
trust it!
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The task of classical inference
22 BT {ESS

Given some data we want to know if (e.g.) a mean is different from zero or if
two means are different
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Tools of classical inference s TE

|. A null-hypothesis F{Ri%
Typically the opposite of what we actually “hope”, e.g.
BEEEAPTEAE IR E
There is no difference
between groups: [ = M2

There is no effect of
treatment: U = 0
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Tools of classical inference s TE

|. A null-hypothesis Z{&i%
2. A test-statistic MIQZT

Assesses “trustworthiness’
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Tools of classical inference s TE

|. A null-hypothesis Z{Ri%&
2. A test-statistic MIQZT
Assesses “trustworthiness L v {EE

A Lstatistic reflects precisely this
tFUTIEFRIR 7 IX R Large difference:

— = Trustworthy
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Tools of classical inference s TE

|. A null-hypothesis Z{&i%
2. A test-statistic MIQZT

Or expressed in GLM lingo

& MGLMAER T
Large difference: Trustworthy _
o . L1= IT9
_ [&] RMAER: A3
- B2 \

L = '3
B Vo2y/ch(XTX) tc

b1 T L
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Tools of classical inference s TE

|. A null-hypothesis ZE{Ri%k
2. A test-statistic M¥IQFIT
3. A null-distribution £% 7

We might then get these data
Bl 1P BEFS R IX L 2R

51
3, | T €
Let us assume there is no
difference, i.e. the R
. TR _
I’lL\I”-\h)’BOtheSIS |§\tr_u_e. t— 9109 c' 3=1.17
X5, EFRIRIER ~
_ c'B
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Tools of classical inference s TE

|. A null-hypothesis ZE{Ri%k
2. A test-statistic M¥IQFIT
3. A null-distribution £% 7

We might then get these data
Bl 1P BEFS R IX L 2R
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Tools of classical inference s TE

|. A null-hypothesis ZE{Ri%k

2. A test-statistic QI84TiT O%e fguld :ave go;ttebn*g;ese
o A T B BEFR1Z IX L &R
3. A null-distribution E9 % PIATIS =
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Tools of classical inference s TE

|. A null-hypothesis ZE{Ri%k
2. A test-statistic M¥IQFIT

o . maybe theseZ} IT1X4F
3. A null-distribution %%
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Tools of classical inference s TE

|. A null-hypothesis ZE{Ri%k

2. A test-statistic #8I8%5it °TTP§E}‘P2 t;(‘;;e
. BB A EEX

3. A null-distribution E% % i

o
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Tools of classical inference s TE

|. A null-hypothesis ZE{Ri%k
2. A test-statistic M¥IQFIT
3. A null-distribution £% 7

etc




Tools of classical inference s TE

|. A null-hypothesis ZE{Ri%k
2. A test-statistic M¥IQFIT
3. A null-distribution £% 7

And if we do this til the

. cows come home
3 BII—BEXAMERE) LT




Tools of classical inference s TE

|. A null-hypothesis ZE{Ri%k
2. A test-statistic M¥IQFIT
3. A null-distribution £% 7

So, why is this helpful?
A, AT LXFEEREE?




Tools of classical inference s TE

|. A null-hypothesis ZE{Ri%k
2. A test-statistic M¥IQFIT
3. A null-distribution £% 7

Well, it for example tells us
that in ~1% of the cases t >
3.00, even when the null-

hypothesis is true.
#FIE, fhSHIRIATARL I%RIPIRER > 3.00,
EIERIRNE,




Tools of classical inference s TE

|. A null-hypothesis ZE{Ri%k
2. A test-statistic M¥IQFIT
3. A null-distribution £% 7

Or that in ~5% of the cases t >
1.99.

When the null-hypothesis is true.

SETES%MIER Fe> 1.99
SFERIRNE




Tools of classical inference s TE

|. A null-hypothesis ZE{Ri%k
2. A test-statistic M¥IQFIT
3. A null-distribution £% 7

ls

And best of all: This distribution is
known i.e. one can calculate it.

Much as one can calculate sine or cosine
EEENE: XMoHMEEHN, BIRMITEE,
MEBEE— N AT MUITEIEZSRZ




Tools of classical inference s TE

|. A null-hypothesis ZE{Ri%k
2. A test-statistic M¥IQFIT
3. A null-distribution E9%

ls

And best of all: This distribution is
known i.e. one can calculate it.
Much as one can calculate sine or cosine

BETNE: XMHHEEAMN, BFLTEE.
MRS D AT BEZHRY
Provided that e ~ N(0,0?)

5 0 5 HEe ~ N(0,0?)




An example experiment #)szis

|. A null-hypothesis Z{Ri% Hy: T1=7%5 , H;:x1>%5
2. A test-statistic M¥IQFIT
3. A null-distribution £% 7

So, with these tools let us do an experiment

FIAXETR, Bl IR0




An example experiment #)szis

|. A null-hypothesis Z{Ri% Hy: T1=7%5 , H;:x1>%5
2. A test-statistic I845it o= 2.64

3. A null-distribution E4%

So, with these tools let us do an experiment

FRAXETH, FIRME
5
B2

T VT (XTX) e V08510

= 2.64




An example experiment sz

|. A null-hypothesis Z{Ri% Hy: T1=7%5 , H;:x1>%5
2. A test-statistic I845it o= 2.64

3. A null-distribution E4%

So, with these tools let us do an experiment

FIRAXETR, Bl IR

If the null-hypothesis is true,
we would expect to have a
~1.46% chance of
finding a t-value this large or

larger
MRREBIRNE, WBAHAER 1.46%MIT=
ta | UL NI A= SN N

ls

-5 0 264 5



An example experiment sz

|. A null-hypothesis Z{Ri% Hy: T1=7%5 , H;:x1>%5
2. A test-statistic I845it o= 2.64

3. A null-distribution E%7 fo = 2.64*
So, with these tools let us do an experiment

FIRAXETR, Bl IR

There is ~1.46% risk that we reject the
null-hypothesis (i.e. claim we found
something) when the null is actually true.
We can live with that (well, | can).
SERKASTAEN, B11E146%MNES
EEFRIR (BIEMBATRM T HELERA)
BATRI AR XMIER (1|, ZDFEN)

ls

-5 0 264 5



False positives/negatives f{BRrRIL/EE

* | am sure you have all heard about “false positives” and “false
negatives’. BiBEAREIFHIT ML R EBRL".,
* But what does that actually mean? @mxsmretazs?



False positives/negatives {BRrRIE/RE

* | am sure you have all heard about “false positives” and “false
negatives’. BiBEAREIFHIT ML R EBRL".,
* But what does that actually mean? @mxsmretazs?

* We want to perform an experiment and as part of that we
define a null-hypothesis,e.g. Hy : 1 =0

BATEHAIT 1T, AEEFEX—TFRIR
e Now what can happen? meEagsta?



False positives/negatives f{BRrRIL/EE

* | am sure you have all heard about “false positives” and “false
negatives’. BiBEAREIFHIT ML R EBRL".,
* But what does that actually mean? @mxsmretazs?

* We want to perform an experiment and as part of that we
define a null-hypothesis,e.g. Hy: 1 =20

HAVERT—1TER, AEEREX—TF/KR
* Now what can happen! muassttar

Ho is true B

True state of affairs E3L|5)
Ho is falsefFR =




False positives/negatives f{BRrRIL/EE

* | am sure you have all heard about “false positives” and “false
negatives’. BiBEAREIFHIT ML R EBRL".,
* But what does that actually mean? @mxsmretazs?

* We want to perform an experiment and as part of that we
define a null-hypothesis, e.g. Hp : =10

HAVERT—1TER, AEEREX—TF/KR

* Now w

hat can happen! meEagsta?

Ho is trueEL . .
True state of affairs BE3L[5)

We don’t reject Ho N E4EH,

Ho is falsefFR

O d o o LAY A \ —
We reject HoTEZ@Ho} ur decision Tl JAVARTE



False positives/negatives f{BRrRIL/EE

Ho is trueE

True state of affairsE L[5
Ho is falsefEx =

We don’t reject HoNE 48 Ho

O d o o A A E\ \ =
We reject HOTEZ@,HO} ur decisionF{| JBV/RE

We don’t reject HoNEZE  We reject HotE4E

Ho is true N E

Ho is false J91ER
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False positives/negatives f{BRrRIL/EE

Ho is trueE

True state of affairsE L[5
Ho is falsefEx =

We don’t reject HoNE 48 Ho

O d o o A A E\ \ =
We reject HOTEZ@,HO} ur decisionF{| JBV/RE

We don’t reject HoNEZE  We reject HotE4E

Ho is true J & | False positive{fzfH|%
Ho is false J91Fg | False negative{Elezﬁ’V_i._ @




False positives/negatives f{BRrRIL/EE

Ho is trueE

Ho is false(B True state of affairsEL|F;

We don’t reject HoNE 48 Ho

O d o o A A F \ =
We reject HOTEZ@,HO} ur decisionF{| JBV/RE

We don’t reject HoNEZE  We reject HotE4E

False positive

_— e~
]

Ho is true J & d Type | error
< ERRAlE, IR

False negative

Ho is false N1 Type Il error -
BIALE, 122 \ 4
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Multiple Comparisons =

llml

5 EEER

® |n neuroimaging we typically perform many tests as
part of a study mmzEgys, BIBEZSMTTSRR, FHRRN—55

8

N BE>

1
roup Grou u
Differ&H¢ here? Maybe"here? Or Here?

XBE? B & 1L X7 l;EE:LZ?



What happens when we apply this to imaging
data! FHINEX T CRIEGHESKER?

z-map where each voxel ~N. 03l
Null-hypothesis true everywhere, i.e. NO
ACTIVATIONS .
BMIRESD A, |

FRIREMBMNESRY, EMEREE

Z-map £g8clustell*s
thresholded at ZOXG S
| 64 ~5.5% of the voxels
- EXRSHI6MHE, 288 MEE,
H{ETE .64

29 X LR RY5.5%

That’s a LOT of false positives
BRZ IR (RAE)



Italians doing maths:

The Bonferroni correction
BEARFABIENZE . Bonferronit1E

Bonferroni says threshold at & divided by # of tests
B N 122 2 afR DAL R 25

5255 voxels :
0.05/5255=10-3
| 0-3
_ 5.65
Z-map No false positives.
thresholded at H h for Italy!
g urrah for ltaly!

Tizik,. EAFIAES!
S{E1E5.65




But ... doesn’t 5.65 sound very high?
{BES5.65ITERAZRE A

Largest observed Too lenient Too harsh

value bl s
BATLNE AE A
! Bonferroni - 0.05 - 10-5
threshold |
100 \ A 5 )
=5 FR / 7
/ |.64 5.65

(-)6 -3 0 3 6
Observed values
in the z-map
LB So what do we want then?

BAZIRBZEH A7




Family-wise error gz

Let’s say we perform a series of identical studies
FRIxBAHIT 7 — R EHE AR

660)0/0/8 6|08 0 remp—w—_—_—"
86000000 60—

Let us further say that the null-hypothesis is true.
BATE—F IR FRIRIER,

We want to threshold the data so that only once in 20 studies do

we find a voxel above this threshold.
BATEN PGB HITHELE, E20MARFRE R AIMARSTULEE.

HEEEEEREEEE - o v indsucna
threshold?
L e
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FDR - False Discovery Rate FDR-FHIR & HI



Maximum z gk

When we want to control “family-wise error”, what do we in practice want?
B M+ 2B EHIIRERER, BAILREEFANE?

If the null-hypothesis is true (no activation) we want to reject it no more than
5% of the time. MIRFHREANE (THE) , BAIBERKTS%HIRHRIELth.

And if we reject anything, we will definitely reject the most “extreme” value
(max(z)) in the brain. MRFLANVEL TR, BMEERELRMPHNRRIHAIE(max(z))

max(z)=5.16
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When we want to control “family-wise error”, what do we in practice want?
B M+ 2B EHIIRERER, BAILREEFANE?

If the null-hypothesis is true (no activation) we want to reject it no more than
5% of the time. MIRFHREANE (THE) , BAIBERKTS%HIRHRIELth.

And if we reject anything, we will definitely reject the most “extreme” value
(max(z)) in the brain. MRFLANVEL TR, BMEERELRMPHNRRIHAIE(max(z))
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max(z)=6.84



Maximum z gk

When we want to control “family-wise error”, what do we in practice want?
B M+ 2B EHIIRERER, BAILREEFANE?

If the null-hypothesis is true (no activation) we want to reject it no more than
5% of the time. MIRFHREANE (THE) , BAIBERKTS%HIRHRIELth.

And if we reject anything, we will definitely reject the most “extreme” value
(max(z)) in the brain. MRFLANVEL TR, BMEERELRMPHNRRIHAIE(max(z))

0 5 10 15 20

max(z)=5.93



Maximum z gk

When we want to control “family-wise error”, what do we in practice want?
B M+ 2B EHIIRERER, BAILREEFANE?

If the null-hypothesis is true (no activation) we want to reject it no more than
5% of the time. MIRFHREANE (THE) , BAIBERKTS%HIRHRIELth.

And if we reject anything, we will definitely reject the most “extreme” value
(max(z)) in the brain. MRFLANVEL TR, BMEERELRMPHNRRIHAIE(max(z))

max(z)=4.62



Maximum z gk

When we want to control “family-wise error”, what do we in practice want?
B M+ 2B EHIIRERER, BAILREEFANE?

If the null-hypothesis is true (no activation) we want to reject it no more than
5% of the time. MIRFHREANE (THE) , BAIBERKTS%HIRHRIELth.

And if we reject anything, we will definitely reject the most “extreme” value
(max(z)) in the brain. MRFLANVEL TR, BMEERELRMPHNRRIHAIE(max(z))




Maximum z gk

When we want to control “family-wise error”, what do we in practice want?
B M+ 2B EHIIRERER, BAILREEFANE?

If the null-hypothesis is true (no activation) we want to reject it no more than
5% of the time. MIRFHREANE (THE) , BAIBERKTS%HIRHRIELth.

And if we reject anything, we will definitely reject the most “extreme” value
(max(z)) in the brain. MRFENEL TR, B8 ESELRMPHRRIHIE (Mmax(z))

Etc...
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Maximum z gk

When we want to control “family-wise error”, what do we in practice want?
B M+ 2B EHIIRERER, BAILREEFANE?

If the null-hypothesis is true (no activation) we want to reject it no more than
5% of the time. MIRFHREANE (THE) , BAIBERKTS%HIRHRIELth.

And if we reject anything, we will definitely reject the most “extreme” value
(max(z)) in the brain. MRFENEL TR, B8 ESELRMPHRRIHIE (Mmax(z))

This is the distribution we want to
use for our FWE control.

X EBATZRTFFWEEHIN D,

5 10 15 20



Maximum z gk

When we want to control “family-wise error”, what do we in practice want?
B M+ 2B EHIIRERER, BAILREEFANE?

If the null-hypothesis is true (no activation) we want to reject it no more than
5% of the time. MIRFHREANE (THE) , BAIBERKTS%HIRHRIELth.

And if we reject anything, we will definitely reject the most “extreme” value
(max(z)) in the brain. MRFLANVEL TR, BMEERELRMPHNRRIHAIE(max(z))

) [ This is the distribution we want to use
for our FWE control.
But there is no known expression for
it! ®
XERINEHRTFFWEREINS %, {8
AN N SREECAMNFLASR! ©
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Spatial extent: another way to be surprised
=EEE: E—MEAESHAR

This far we have talked about voxel-based tests
Bai N EEA1TIe T EF AREZGEE,

We say: Look! A z-value of 7.That is so
surprising (under the null-hypothesis)
that | will have to reject it. (Though we
are of course secretly delighted to do
SO)

BESFT7, RABIINT (EZRIRT) , BHAFNHES
fit, (2ARMNIARRFIEXAM, )
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Spatial extent: another way to be surprised
=EEE: E—MEAESHAR

This far we have talked about voxel-based tests
Bai N EEA1TIe T EF AREZGEE,

We say: Look! A z-value of 7.That is so
surprising (under the null-hypothesis)
that | will have to reject it. (Though we
are of course secretly delighted to do
SO)

BESFT7, RABIINT (EZRIRT) , BHAFNHES
fit, (2ARMNIARRFIEXAM, )




Spatial extent: another way to be surprised
=EEE: E—MEAESHAR

But sometimes our data just aren’t that surprising.
BREMMEBEAINEFERIRZARINT .

Nothing surprising here! The largest
z-value is ~4.We cannot reject the
null-hypothesis, and we are

devastated.
RERERND! SRANAEN~4, BAIFEEELTEIL, &
TR HREIEOEE,




Spatial extent: another way to be surprised
ZESEE: Z—TLARESFRIA
So we threshold the z-map at 2.3 (arbitrary threshold) and look at the

spatial extent of clusters
FHitt, FAVEz-maplIEEER23 (EEEE) , AEEEHENZEEE

We say: Look at that whopper! 301 connected
voxels all with z-values > 2.3.That is really
surprising (under the null-hypothesis). | will
have to reject it.

BEIRTHRRANR! 301 MERNARYRF(E> 2.3, X
TLANRT (ERRIRT) . BERETEELE,




Distribution of Max Cluster Size
B ANGBEANIND

As with the z-values we need a
“null-distribution”. What would that

look like in this case?
58—, BNESHH, XMERT, BEESIEH?

Let's say we
have acquired

some data
BA1RE T — R



Distribution of Max Cluster Size
B ANGEANIND

If we reject any cluster we will reject the
largest. So what we want is the
distribution of the largest cluster, under the

null-hypothesis.
MERBAVBBE(EIERE, BATFEEBRZANER, FIUATA]
BENZEZHRIR FTRAREND .,

Threshold the

z-map at 2.3

(arbitrary)
R UTHIEEIRE2.3



Distribution of Max Cluster Size
B ANGEANIND

If we reject any cluster we will reject the
largest. So what we want is the
distribution of the largest cluster, under the

null-hypothesis.
MERBAVBBE(EIERE, BATFEEBRZANER, FIUATA]
BENZEZHRIR FTRAREND .,

J/8

Locate the largest
cluster anywhere

In the brain.
REAR A BR AR



Distribution of Max Cluster Size
B ANGEANIND

If we reject any cluster we will reject the
largest. So what we want is the
distribution of the largest cluster, under the

null-hypothesis.
MERBAVBBE(EIERE, BATFEEBRZANER, FIUATA]
BENZEZHRIR FTRAREND .,

And record how

large it is.

[//// ERFESA.




Distribution of Max Cluster Size
B ANGEANIND

If we reject any cluster we will reject the
largest. So what we want is the
distribution of the largest cluster, under the

null-hypothesis.
MERBAVBBE(EIERE, BATFEEBRZANER, FIUATA]
BENZEZHRIR FTRAREND .,

And do the same
for another

experiment...
3 B— IR BANLE. .
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Distribution of Max Cluster Size
B ANGEANIND

If we reject any cluster we will reject the
largest. So what we want is the
distribution of the largest cluster, under the

null-hypothesis.
MERBAVBBE(EIERE, BATFEEBRZANER, FIUATA]
BENZEZHRIR FTRAREND .,

Etc ...

/ él‘_*é;ﬁo o o




Distribution of Max Cluster Size
B ANGEANIND

If we reject any cluster we will reject the
largest. So what we want is the
distribution of the largest cluster, under the

null-hypothesis.
MERBAVBBE(EIERE, BATFEEBRZANER, FIUATA]
BENZEZHRIR FTRAREND .,

0.06
0.04
Until we have ...
0.02" 1 BEIEA]...
0

0 20 40 60 80 100



Distribution of Max Cluster Size
B ANGEANIND

If we reject any cluster we will reject the
largest. So what we want is the
distribution of the largest cluster, under the

null-hypothesis. :
nRnEsEaRE, ShEees nen. mugn 1 We find a cluster larger
BENE BRI TRABENS . than 76 voxels we reject

the null-hypothesis.

208 MBRATRE—MELL 76 MEES, BB
TR,
0.04
.. | And this (76) is the level
| //vvewant to threshold at
XA E I VB E R,
0

0 20 40 60 80 100



Distribution of Max Cluster Size
B ANGEANIND

So, just as was the case for the t-values, we
now have a distribution fthat allows us to
calculate a Family Wise threshold « pertaining

to cluster size.
Fitt, MIEHE—E, BMNMEBF— T HfEERIIESITES &

KNG S B R B S u, But what does
fand u
- | crucially
f= u depend on?
(BN w2 B e T
0.04 40
0.02+

0 20 40 60 80 100



Distribution of Max Cluster Size

BRAFBEA/ND T
So, just as was the case for the t-values, we  fdepends crucially on
now have a distribution fthat allows us to the initial “cluster-
calculate a Family Wise threshold « pertaining forming” threshold?
to cluster size. FREEEUR T
R, MEHE—H, HENAEE—ToHIEER(EBTESk Wa"pRAZ A B (E?

NNBRNBIRRIEE u,




Distribution of Max Cluster Size

R AR N/ ND T
So, just as was the case for the t-values, we /depends crucially on
now have a distribution f'that allows us to the initial “cluster-
calculate a Family Wise threshold « pertaining forming” threshold?
to cluster size. fRBEURT
Fitb, FEHE—F, BNIMEE — "o HmEFERNEBRITES R YUE“ PR B AV IS E?

NNERBSRBIENE u,

0.1

0.08+

0.06

0.04+

0.02+

0 20 40 60 80 100 z=2.3



Distribution of Max Cluster Size

R AR N/ ND T
So, just as was the case for the t-values, we /depends crucially on
now have a distribution f'that allows us to the initial “cluster-
calculate a Family Wise threshold « pertaining forming” threshold?
to cluster size. fRBEURT
Fitb, FEHE—F, BNIMEE — "o HmEFERNEBRITES R YUE“ PR B AV IS E?

NNERBSRBIENE u,

0.1

0.08+

0.06

0.04+

0.02+

30 100 z=2.7



Distribution of Max Cluster Size

R AR N/ ND T
So, just as was the case for the t-values, we /depends crucially on
now have a distribution f'that allows us to the initial “cluster-
calculate a Family Wise threshold « pertaining forming” threshold?
to cluster size. fRBEURT
Fitb, FEHE—F, BNIMEE — "o HmEFERNEBRITES R YUE“ PR B AV IS E?
NNE X2 EREE u.

60 80 100 z=23.1



Distribution of Max Cluster Size
B ANFRNIND T
Hence the distribution for the cluster size should

really be written £(z) and the same for u(z)
BEL UL K NI 53 5 G A2) IR ()t o

z=3.1
z=2.7
0.1 ,
0.08+ 2 3
_ z=2.
=23 B85 0.1 , ‘
. . 0.04+ 0.08}
40 60 u =49
0.02+ 0.06
% 20 40 60 0.04}
But as before we don’t have an - u="76
expression for these distributions.

MG ZBI—1F, BAIAIEXLED RIRIAL. % 20

100



Outline X 2N

Null-hypothesis and Null-distribution FERIZHNZED

Multiple comparisons and Family-wise error ZE LR IRIEIRER

Different ways of being surprised IRENAE AN
® Voxel-wise inference (Maximum z) KRR (&Kz)

e Cluster-wise inference (Maximum size)  FR/KFHMT (FART)
Parametric vs non-parametric tests Z W vsIES QTG
Enhanced clusters 18RI PR

FDR - False Discovery Rate FDR-FHIR & HI



Parametric vs hon-parametric
SIS

® As we described earlier, one of the great
things about for example the t-test is that Provided that e ~ N(0,0?)
we know the null-distribution

® But most distributions are not that simple
BRZBH oM AZULLE S

® And errors are not always normal-

distributed
REH AR LESD

-0.5 0 05



Example:VBM-style analysis
{BIENVBMES B 5 17

« Our data is segmented grey matter maps #EESIFHREE

* A voxel is either grey matter, or not. —MrEEIFERRE

Group #1 Group #2

(Oxford students) (Train spotters)
4| HiEsadE B2 YIZRIFRIMRE




Parametric vs hon-parametric
SIS

® There are approximations to the
Max-z and Max-size statistics
Max-zF]Max-sizeZ2 1T BT L RS e

0.06

0.04

0 20 40 60 80 100

® These are valid under certain sets e Search area “large relative to

of assumptions boundary”
jﬁb?‘%]ﬁbﬁﬂ ‘“-‘Fﬁy& o :rliifghz?;ugh” cluster forming

® NlAarmal Aietrihiirtad arrare

¢ BUt Can be a PrObIem When aPPIied Cluster failure: Why fMRI inferences for spatiagxic::tk
outside of that set of assumptions

have inflated false-positive rates
ERIH—EIER FrIgE= A o)

arge group of healthy controls,



Parametric vs hon-parametric

XS
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TESTING FOR SIGNALS WITH UN]

OWN

Fo— LOCATION AND SCALE IN A x> RANDOM
e FIELD, WITH AN APPLICATION TO fMRI

ESTIMATING THE NUMBER OF PEAKS IN A RANDOM

® Those approximations were based on e
Gaussian Random Field Theory, and was an
impressive body of work

il

Keith J.

‘The geometry in the title is not the geometry of lines
and angles but the modem geometry of topology and
shape. What has this to do with statisties? Some ro-
cent work has found some fascinating applications of a
mixtur of geomets, tpelogy, pr

HF=H 1. SAEERZIE s T TS
T E TS HrfETL12IER, N == =

Topology: The Euler Characteristic

Ttk

. Introduction. Many studies o
omography (PET) involve th inter
usually the difference between two
blood flow under baseline and stimul

Received June 109 rovised J

Primary &
ey eords o phrass Ees charcieric
ik, mage anay.

6

ed after Leonhard Euler (1707-1783), the most
prolific mathematician of the 18th century, the Eu-
ler characteristic itself began with Euler's observation
about polyhedra
ccall that  polyhedson i n solid object bounded
by plane faces, such as a cube. Euler realized that, if
you count the faces (F), edges (E), and vertices (V)
of a polyhedron, then V'~ k5 + F = 2 no mater how
the polyhedron is constructed.
A cube fo cxample s F =6 faes, = 12 adgss
and oo i 1a) s0 that 8126 = 2.
Fora ald thatconsis of P poly o tuck togthar

tly more general

e experientation will canvine you tht this
P x all solids (see Fig. 1b)—well
imast al. Tfthe selid has » hle going gt through

KEITH J. WORSLEY," McGill University

Abstract

The Geometry of Random Images

‘Worsley

i, like  doughnut (sce Fig. 1c), then the result no

Tonger holds. In fact, the result is V — E+F — P =0

for any solid with just one hole

adl - But this docs not deter a good
Srom

nals with unknown
st

inimages obiained

sibili Vhat happens if there are two holes, like,
o figwe 8 (oo Fig. 107 Then it tum out dat
3 P = 1, and 50 on; cach hole reduces

<=

V-E+F-Phbyl
So now suddenly we have & fascinating new tool.
‘We can count the mumber of holes i a solid using the
E+F— P; it has the very interesting

P that no matter how the sld s subdivided
into polyhedsa, the valuc of V. P s invariant.
T b th B ofopetog, Wo den i Bt
characteristic.(EC) of a solid as simply
=V-E+F-P

for any subdivision of the solid into polyhed.

o pretzekshaped solid (Fig. 1¢) is
23 1 for the sl part (the part you at), a ~3
for cach of the three holes, giving 2 overall. Have
e covered all possbiities? Not Guiteif th s0id s
hollow, like a tennis ball, then surprisingly enough the.
EC s 2 (sco Fig. 11).

Think you've g, it now? How about  solid shaped
ke & bicycle inner tube? Answer: The EC is 0, and if
it has a puncture, then the EC is —1

One more slght generelization, which will prove to
be extremely useful for practical applications: Suppose

27

® They served us fantastically well at a time
when we had little choice

EBA B TR FERIE &, BIIATAITRME T
HERARSS

® But the future is non-parametric

BRKE TSN !

sion tomography (PET)
+ interested in detecting
the signal to noise ratio,
tion with a filter . The

n




Parametric vs non-parametric
SIS

[ NON ) N\ FEAT - FMRI Expert Analysis Tool v6.00

Higher-level analysis —4| Statistics —4|

Misc I Datal I Stats I Post—statsl Th e Red (ran d O m ise)

Mixed effects: FLAME 1 — | Ba. ron
_1 Use automatic outlier de-weighting QI@ E % (randomlseIE)

Model setup wizard l

Full model setup |

Go save | Load |  Ext |  Hep |  uiis]
00 N\ FEAT - FMRI Expert Analysis Tool v6.00

Higher-level analysis —-| Statistics —4|

Misc I Datal I Stats I Post—statsl

Randomise — |Permutations 500035

1 Use automatic outlier de-weighting

Model setup wizard |

Ful model setp |

FLAME going down in flames

FLAMETERE IR FPBE T

Go Save load |  Ext |  Hep |  wiis]




A simple permutation test ®HHERIOE

*  We can permute the data itself to create a distribution that we can use

to test our statistic.
BAIAI AR EIRAS #1TEMR, USIETEFINLARITHEEREN D .

+ Makes very few assumptions about the data 3#iE#ME>HIRIE

+ Works for any test statistic &M F{E@LTit

We have performed an

experiment
=5a (10 TN v

3

° a

a8 ;

8 %

1 o 8

a

0 1 2

Group #

And calculated a statistic,
e.g.a lvalue it& 7 &

=227

If the null-hypothesis is true, there is no
difference between the groups.That means we
should be able to “re-label” the individual
points without changing anything.
MRFRIINE, WAHERBER. XEREHA]
RZBETF “BFIINC & TR, MASEMREMNE,



A simple permutation test ®HHERIOE

We can permute the data itself to create a distribution that we can use

to test our statistic.
BATA AN EIEAR S #HTER, UEIZETAFIRSITHEEND .

+ Makes very few assumptions about the data #EHIE/DAFRIL

+ Works for any test statistic &R F{E@TLTit

One re-labelling t-value after re-labelling
E—RERID EinioiaE
o @ o Original
8 2 Iabflljpg
1 g 8 / ngl:l*mla
a J' /
" 2 N o
Group #

Let’s start collecting themFF#41K = thii]



A simple permutation test ®HHERIOE

We can permute the data itself to create a distribution that we can use

to test our statistic.
BATA AN EIEAR S #HTER, UEIZETAFIRSITHEEND .

+ Makes very few assumptions about the data #EHIE/DAFRIL

+ Works for any test statistic &R F{E@TLTit

SeCOklji \re-la_l?elling t-value after re-labellings
55 REHTIC FCEhE
3 t=1.97
3 : a \ Original
8 ° .
2 2 labelling
| g s // BT
O | -]

1 2 -5 0 5

Group #
And another onez—+



A simple permutation test ®HHERIOE

*  We can permute the data itself to create a distribution that we can use

to test our statistic.
BATA AN EIEAR S #HTER, UEIZETAFIRSITHEEND .

+ Makes very few assumptions about the data #EHIE/DAFRIL

+ Works for any test statistic &R F{E@TLTit

Of the 5000 re-labellings, only 90 had a t-value >
2.27 (the original labelling).
TE5000 N EFNCH, RBEIOTHIE> 2.27 (FIEHRE) .

l.e. there is only a ~1.8% (90/5000) chance of Original
obtaining a value > 2.27 if there is no difference

between the groups L Ia}%fl!'\gg
Cf.p(x=2.27) = 1.79% for t, V4 ARt
EIARZTAHZEIRBESR, MWIHE1.8% (90/5000) B3RS

2278918, CFtI8ip (x227) =1.79% 5000 reo-labellfngs. Phew!
5000;REHRIC, M

\



And we can use this for any statistic
BA VA AT GITER XD
This is what we got x2#E31m
We compared activation
by painful stimuli in two

groups of 5 subjects

Very intriguing activation. f; =
4.653FE FIHTEUE

each. Prof. ran to write to Science.
IR T AAPBHBZIHNERR But, did she jump the gun?
TR BUBGE I . IR KA Science B 7, BREfiR 2T

_ATG?



And we can use this for any statistic
BATRTIAR L HERIR D
This is what we got x2#E31m
We compared activation
by painful stimuli in two

groups of 5 subjects

Very intriguing activation. fy =
4.659FFE FUORIEE

each. Prof. ran to write to Science.
AR T RAFBASRZIHENE But, did she jump the gun?
TR BUBGE I . B K A ScienceiRin 7, BREfiR2iT

270537

max(f)=4.65

27nd level Our group difference

model map
BRI RE BANERE



And we can use this for any statistic
BATRTIAR L HERIR D
This is what we got x2#E31m
We compared activation
by painful stimuli in two

groups of 5 subjects

Very intriguing activation. fy =
4.659FFE FUORIEE

Prof. ran to write to Science.

each.
B LR T AR SAs BRIt EE But, did she jump the gun?
R, HIFELASciencelRTE T, ERMIBZ

270537

max(f)=8.23

Permuted Permuted group

model difference map
B iR BIRA 2R



And we can use this for any statistic
BATRTIAR L HERIR D
This is what we got x2#E31m
We compared activation
by painful stimuli in two

groups of 5 subjects

Very intriguing activation. fy =
4.659FFE FUORIEE

Prof. ran to write to Science.

each.
B LR T AR SAs BRIt EE But, did she jump the gun?
R, HIFELASciencelRTE T, ERMIBZ

270537

max(f)=5.43

2nd 2nd permuted

Permutation map
FE_REIR F_NEBRE



And we can use this for any statistic
BATRTIAR L HERIR D
This is what we got x2#E31m
We compared activation
by painful stimuli in two

groups of 5 subjects

Very intriguing activation. fy =
4.659FFE FUORIEE

Prof. ran to write to Science.

each.
B LR T AR SAs BRIt EE But, did she jump the gun?
R, HIFELASciencelRTE T, ERMIBZ

270537

max(f)=5.84

2nd permuted

Permutation map
BZRE® E=RERE



And we can use this for any statistic
BATRI ASS QI ER X
This is what we got x2#E31m

We compared activation
by painful stimuli in two
groups of 5 subjects

each.
B T RAFEBHBAZINENE
RREEEIER

Very intriguing activation. fy =
4.659FFE FUORIEE

Prof. ran to write to Science.

But, did she jump the gun?

. IR A LASciencetRiT 7, BEMERZY

Original &7,

labelling
J?il‘n*}/ﬁﬂ

3925 permutations
yielded higher
max(t)-value than
original labelling.
0 5 10 15 We cannot reject

5000 permutations the null-hypothesis.

5000)X &% 3925 R EIR S AV AE L RIS R
LS. BAEEEEFRIR




But beware the “exchangeability”
(BE/JVL RT3 R
® When we swap the labels of two data-points we need to

make sure that they are “exchangeable”
BB R MR SIITICH, BRI

® | will start to explain “exchangeability” through a case

that is not
BB @B — 1 I AR A F IR R rT 23 1%

® But first we need to learn about covariance matrices
(BE SIS T RIS 26k

—

—_

(=
T

“ . | Height and weight of a
el | random sample of

Swedish men
I8 8 7 REA A S SN E

Weight (kg)
8
<

[

]
(=)

T

[ ]

w
(=]
T

—_
w
(=

170 190 210
Height (cm)



Covariance matrices
175 Z R

® When we swap the labels of two data-points we need to

make sure that they are “exchangeable”
U BRFH NIRRT, BRI

® | will start to explain “exchangeability” through a case
that is not

BORF BT — 1A FI RHRAV B F T I AR FT 33

® But first we need to learn about covariance matrices
(BE%RI1ET RN EER

Mean height = 18] cm T#5518i1cm

Characterised
2 x’ ;;.'.:& 77777 * Mean weight =79.4 kg by two means
g el

3 PR I A EHRET9.4kg A FERIE

210



Covariance matrices
175 Z R

® When we swap the labels of two data-points we need to

make sure that they are “exchangeable”
U BRFH NIRRT, BRI

® | will start to explain “exchangeability” through a case
that is not
BASE — T AT SR A0 BI T FHA BB AT i

® But first we need to learn about covariance matrices
(BRSBTS T RIS 26

—_
—_
(=)

S D i - Anda
SR 6 S o 130~ 52 covariance -
= 70 $% AR
g 52 165 matrix

i ZERERE

—
wn
(=}

170 190
Height (cm)

210



Covariance matrices

i EERE

® When we swap the labels of two data-points we need to

make sure that they are “exchangeable”
U BRFH NIRRT, BRI

® | will start to explain “exchangeability” through a case

that is not
RIS BT — N AT SR ) F R4 R R BT it

® But first we need to learn about covariance matrices
(BRSBTS T RIS 26

130 52 4.8
s Y= 52 165 69
i o 48 69 156

56 70 96 1 iG
Weight (kg)



Covariance matrices

i EERE

® When we swap the labels of two data-points we need to

make sure that they are “exchangeable”
U BRFH NIRRT, BRI

® | will start to explain “exchangeability” through a case

that is not
RIS BT — N AT SR ) F R4 R R BT it

® But first we need to learn about covariance matrices
(BRSBTS T RIS 26

110t

DBP (mm Hg)
3 =
PY ®
©
L 4
X
o
%
®

wn
o
®

56 70 96 1 i()
Weight (kg)




| st level fMRI data is not exchangeable
B — I RER R R SR R AT 31

® You may, or may not, have seen this slide in the |st level
{REIFIE E—MNAIGLMITIS R I XD 4IKT

GLM talk.

Regressor, [ol)d2

Explanatory Variable (EV) HAXE{&

Y =

Data from
a voxel

— MERIEIE

X1 X9_

X

Design Matrix

IR AERE

|

Regression parameters, [E])35%§

Effect sizes M=

This time we will
look more closely
at this part

XRBANSFHEXE D
B } LE
P> e ~ N(0,>)

Our old friend “the
g + e covariance matrix’’

Gaussian noise

(temporal autocorrelation) BANNERR R ERERE”
SHTIRE (I EEX)



| st level fMRI data is not exchangeable

B —N BTH BRI IR AR R EHE A AI 32 4R

® One important component of noise in fMRI consists of

physiological/neuronal events convolved by the HRF
fmrit— N EERIR A A ) 2 B4 IEARA N 8] 5 HRF S TSR Y .

0.5

-0.5

W%M

100 150 200 250 300
Time (sec)



| st level fMRI data is not exchangeable
E— MR R IRA AR R AT 1
® One important component of noise in fMRI consists of

Jhysiologicallneuronal events convolved by the HRF
o — P RIS 405) R T R LS HRAV BRI AL

0.5

-0.50‘ / / / oo V 250

T e T

05 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

Sample (#)

If we sample this every 20 seconds it no longer looks “smooth”
MRS 20K, HERRAE T8



| st level fMRI data is not exchangeable
E— MR R IR A BB R AT X1
® One important component of noise in fMRI consists of

vhysiological/neuronal events convolved by the HRF
o — P RIS 45) R 1 E T R .S HRAV BRI ALA.

0.5

T /V“\\/\\/\/V\/W W

-0.5

0 5 20 25 30 50
Variance Varlance Sample (#)
at point | at point 2 o

RIBZE R2PE

e ~ N(0,0°T)



| st level fMRI data is not exchangeable
E— MR R IRA AR R AT 1
® One important component of noise in fMRI consists of

vhysiological/neuronal events convolved by the HRF
fmrit— M EERIRAEE A7) 2 A B AN 8] 5 HRF BTSN,

0.5

il ‘

-0.5

0 \\\ N e Tim;5((;ec) ZN >
O-j lW |

05 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

Sample (#)

But that is not a realistic TR.What about every 3 seconds?
BXANTRFIIE, 3sHERE?




| st level fMRI data is not exchangeable
E— MR R IR A BB R AT X1
® One important component of noise in fMRI consists of

vhysiological/neuronal events convolved by the HRF
o — P RIS 45) R 1 E T R .S HRAV BRI ALA.

0.5

il \/\/LMJ/\“/

-0.5

0 35 40 45 50
Variance Varlance Sample #)
at point | at point 2 2

RIBZE R2PE



| st level fMRI data is not exchangeable
E B RYINBE IR R EE A P 3

® | et us now return to our model again

Regressor, [El)/A2
Explanatory Variable (EV) HitE{&

Y =

Data from
a voxel

— MERIVERIE

\

X1

X

Regression parameters, [0])3Z%%
Effect sizes W=

X9_

Design Matrix

gt

|

b
B2

}+

+ €

Gaussian noise
(temporal autocorrelation)

S HTIRE (RHE B ExX)

Bl 1R Bl =AY

® The model consists of

our regressors X and

the noise model
REV R EAEXFEE B

All permutations must
result in “equivalent

models”
M B R — RS A B SR

Let us now see what

happens if we swap two
data-points(points 5 and
10)

BN EBBUNRZEA T HIERE K
Et4,



| st level fMRI data is not exchangeable
E— MR R IR A BB R AT X1
® One important component of noise in fMRI consists of

vhysiological/neuronal events convolved by the HRF
o — P RIS 45) R 1 E T R .S HRAV BRI ALA.

0.5

oL W\Mﬂ/\ﬁ/\/\/

-0.5

0 40 45 50
Pomt |0 now covaries Samp'e

with points 4 and 6
105 46T

And the models
are no longer

equwalent
BABEM



| st level fMRI data is not exchangeable
E— MR R IR A BB R AT X1
® One important component of noise in fMRI consists of

vhysiological/neuronal events convolved by the HRF
fmrit— M EERIRAEE A7) 2 A B AN 8] 5 HRF BTSN,

0.5 I T

-0.5 | | | | | | | | |

And the models
are no longer

equivalent
BRTBEN

And for a random

permutation ...
X TFREHAIER. .




Back to exchangeability
RIS 3

Data-points are not “exchangeable” if swapping them
means that the noise covariance-matrix ends up looking
differently. W RS HEIR IR T IRF D S ZIEME R, MRS,

Formally “The joint distribution of the data must be
unchanged by the permutations under the null-
nypothesis”. ERBETHTER, RENBADH—ETE.

f the noise covariance-matrix has non-zero off-diagonal

elements (covariances) you need to beware.
HIRIRES /5 2B B BRI LT RIS E), IRE/ .

You typically never estimate or see the covariance-
matrix.You need to “imagine it” and determine from

that if there is a problem.
BRI AEND S EEN, BEMAEERMHHHRTEAA.



Examples of exchangeability: =zms7:
Two groups unpaired mgiEEs

00 [X| General Linear Model
EVs I Contrasts & F-testsl

MNumber of main EVs |2 —
MNumber of additional, voxel-dependent EVs IU =

Paste | Group EV1 Ev2
g g

ﬂ
=]
c

h=]
I
=
=]
c

h=]
W

Input 1
Input 2
Input 3
Input 4
Input 5
Input B
Input 7
Input 8
Input 8
Input 10

—_ =] =] =
ool oo

‘%
‘1

R R I A IRILR TR R R LIRS

ololololo
RIARIACTARN AR LRI E IR
RIARILACTARNAIRITACT [RIAIRTEI RN

Setup orthog lisationsl

This is the “exchangeability
group’. Here all scans are
in the same group, which

means any scan can be

exchanged for any other.
XEARINA, MEAAER—AS, BHE
F— AR IR E i

View design I Efficiency | Done |

v

X Model

e N e

Cl group & > group B
C2 group B > group A -1 1

N.B.The “group” labelling
is used for completely
different purposes when

using FLAME/GRFT

= #H{TFLAME/GRFTR, “B iricAF=E
ENELESIELESR




Examples of exchangeability: =17
Two groups unpaired ez

@ @ X/ General Lin

oo | RS Assumed covariance matrix
MNumber of main E\/sm 1E 19H’JT”F%%EB$

Number of additional, voxel-dependent EVs |0 3]

Paste Group EV1 Ev2

group A |group B
I F 0

Input 1
Input 2
Input 3
Input 4
Input 5
Input B
Input 7
Input 8
Input 8
Input 10

LAIRIIRN T AR AR 2

14

ol olol ol =] = =] =

RIL3JE 112

L

0|41 | L4 L0 [4]n | 4[| 4[] [4]> | [4]p| 4]

Y R Y R Y = = =]

RIS U AR AR LR IR IL AR L RIS

RIL3JE 112

o

Setup orthogbrralisations ‘

View design | Efficiency | Done l

The implicit assumption here is that
data from all subjects have the same

uncertainty and are all independent
XS RigERE A HRIINEIER EGHE N HE EH B4 2 IHIIH,




Examples of exchangeability: =zms7:
Two groups unpaired mgiEEs

[ NON | [X| General Linear Model

EVs I Contrasts & F-tests] O rigi n a I Pe rm I Pe rm 2
Number of main EVs m JE&S E;ﬁ | E;ﬁz

MNumber of additional, voxel-dependent EVs |EI =

Paste | Group EV1 EV2 1
Ig g

ﬂ
=]
c

h=]
I
=
=]
c

h=]
-

Input 1 = 1 2 [0 3
Input 2 =\ [ 2 [0 2 2
Input 3 = 1 2 [0 3
Input 4 E 1 3 [0
Input 5 = 1 2 [0 3
Input B = (I 1 3 3
Input 7 = 0o Sl =
Input 8 = (I 1 3
Input 9 = = e 4
Input 10 = 0 H =]
Setup orthogdrélisations | 5

View design | Efficiency | Done |

X Modei

[ = = = T ===

group A group B
Cl group & > group B 1 -1
C2 group B > group A -1 1




Examples of exchangeability: =zms7:

Two groups unpaired mgiEEs

[ NoN | [X| General Linear Model . .
evs | Contasts & s Original Perm | Perm 2 Perm-3
B2 HHh3

Number of main EVs [2 3 JE&S E;ﬁ |

MNumber of additional, voxel-dependent EVs |EI =

Paste | Group EV1 EV2 1
Ig g

ﬂ
=]
c

h=]
I
=
=]
c

h=]
-

Input 1 = 1 2 [0 3
Input 2 =\ [ 2 [0 2 2
Input 3 = 1 2 [0 3
Input 4 E 1 3 [0
Input 5 = 1 2 [0 3
Input B = (I 1 3 3
Input 7 = 0o Sl =
Input 8 = (I 1 3
Input 9 = = e 4
Input 10 = 0 H =]
Setup orthogdrélisations | 5

View design | Efficiency | Done |

X Modei

S [ [

[ = = = T ===

uivalent Z%88

group A group B
Cl group & > group B 1 -1 N B E
C2 group B > group A -1 1 °

N a



Examples of exchangeability: =zms7:
Single group average Ty

X| General Linear Model

EVs l Contrasts & F-tests]

Number of main EVs |1 =
MNumber of additional, voxel-dependent EVs |D §

Paste | Group EV1

o Here we model a single
LR R mean and want to know if
T that is different from zero
o BRI BN FERTEE, EESFEATE.,

View design | Efficiency | Done |

* But there isn’t really anything

® (X Mocel to permute, or is there!
BSEFFHEE BIREART, BRI

O
1
1
1
1
1
1
1
1
1
1

group A
€l Avg activation 1



Examples of exchangeability: =zums17:
Single group average Ty

X\  General Linear Model

EVs ] Contrasts & F-testsl

MNumber of main EVSW Original }Eyﬁ.

Mumber of additional, voxel-dependent EVs |0 §

Paste Group EV1 I ‘ ! I ‘
. +

ﬁ
o
c

b1
p=3

Input 1

Input 2
Input 3
Input 4
Input 5
Input 6
Input 7
Input 8
Input 9
Input 10

—_| =] =] =] =] =] =] =] =] =
—_| =] =] =] =] =] =] =] =] =

RILARUAIRT AR LR IR TR LR U AR IS
RILARUAIST AR IR UARTLAR LR U TR S

View design Efficiency | Done |

@ (X Model

|+ [+ |+ ]+

@)
1
1
1
1
1
1
1
1
1
1

group A -4 -2 0 2 4

€l Avg activation 1



Examples of exchangeability: =zms7:
Single group average Ty

X| General Linear Model

EVs l Contrasts & F-tests]

First flip

Number of main EVs |1 =
MNumber of additional, voxel-dependent EVs |D = %"_;ﬂ%*&
_Paste | Grow EV1 ' ‘ ' ' ‘
|gr0up A —I—
Input 1 7 H 7 H
Input 2 s s
Input 3 1 3 1 3
Input 4 7 H 7 H
Input 5 7 H 7 H
Input 6 1 3 1 3 —I_
Input 7 s s
Input 8 1 3 1 3
Input 9 7 H 1 H
AL DT e, L = T STy

View design Efficiency | Done |

@ [\ Model

_|_
_|_
-
_I_
_|_

O
1
1
1
1
1
1
1
1
1
1

group A 4 2 0 ;) 4

€l Avg activation 1



Examples of exchangeability: =zms7:
Single group average Ty

X| General Linear Model

EVs l Contrasts & F-tests]

MNumber of main EVSW Second fIIP

MNumber of additional, voxel-dependent EVs |D = %" :‘k%*&
_Paste | Growp  EVI ' ' ' ' ‘
|gr0up A
Input 1 7 H 7 H
Input 2 s s
Input 3 1 = 1 =
Input 4 7 H 7 H
Input 5 7 H 7 H
Input 6 7 7
Input 7 1 3 1 3
Input 8 1 = 1 =
Input 9 7 H 1 H
Input 10 1= 7 H

View design Efficiency | Done |

|| %

B+ [+ [+ ]+]+

@ X Model

O
1
1
1
1
1
1
1
1
1
1

o B €

group A -4 %)
€l Avg activation 1

<



Examples of exchangeability: =zums17:

Single group average s

X\  General Linear Model

EVs l Contrasts & F-testsl

Number of main EVs |1 3

Mumber of additional, voxel-dependent EVs |0 §

Paste Group EV1

Input 1
Input 2
Input 3
Input 4
Input 5
Input 6
Input 7
Input 8
Input 3
Input 10

«
=
o
c

b1
I=

RILARUAIRT AR LR IR TR LR U AR IS
RILARUAIST AR IR UARTLAR LR U TR S

[ 14]

View design Efficiency | Done ”

@ (X Model

O
1
1
1
1
1
1
1
1
1
1

group A
€l Avg activation 1

_|_

i =
—I_-—
TR+
_|__—
+ 15
T+
T+
_|_—
i =

_|_




Examples of exchangeability: =zums17:
Single group average Ty

X\  General Linear Model

EVs l Contrasts & F-testsl

Number of main EVs |1 3
Mumber of additional, voxel-dependent EVs |0 %

Paste Group EV1

Input 1
Input 2
Input 3
Input 4

«
=
o
c

b1
I

Input 5
Input 6
Input 7
Input 8
Input 3
Input 10

1
1
1
1
1
1
1
1
1
1

RILARUAIRT AR LR IR TR LR U AR IS

RILARUAIST AR IR UARTLAR LR U TR S

View design | Efficiency | Done |

* And the assumptions are: {Ri%E

® X Hode ® Symmetric errors gz

® Subjects drawn from a single population

O
: ® FErrors independent izzmu
i S8 B — ABROIRIA

group A
€l Avg activation 1



Examples of exchangeability: sz
Two groups paired mas

®=@® |X| General Linear Model

EVs I Contrasts & F-testsl

NumberofmainEVsm I_ ere We Can Only

MNumber of additional, voxel-dependent EVs |D -

Paste | Group EV1 Ev2 EV3 Ev4 EVS EVE M th H
[A-B [Suj T [Subj2  [Sui3  [Subjd4 [SubiS eXC 1ange Scans WI In

Input 1 T T & [ 2 o2 02 [0o2 [03 .

Al 1 A A al Al A al
each subject. l.e. Input
mpd [ 22| [ 2 [0 [ 2§ [0 2 ] o
Input 5 3 = [ 2 —=—1T = [1 2 [0 2 [0 2 If I t2| t3
I:zutﬁ 3 5 13 |0 5 0 5 1 5 0 % 0 5 or nPu ’ nPu
mpu7z |[2 3| [T 2 [08 [03 [03 [ 3 [0 3

A C A A A A A A
for Input 4 etc
VI O O ) O X BT R BRI R

b

isations |

WEiE 1342, 3314

View design | Efficiency | Done ||

[ NON ] X Model
1

1

2

2

3

3

4

4

5

5

A>B Subj 1 SU.b] 2 Sub] 3 Sub] 4 Su.b] 5

Cl AB

C2 B>A -1 IJ IJ U IJ 0



®=®

Examples of exchangeability: mssmz

Two groups paired @
Assumed covariance matrix

EVs ] Contrasts & F-testsl

Number of main EVs m 1E -Lﬁ E,J TjJ‘ 7‘5% %E B$

Number of additional, voxel-dependent EVs |0 3
Paste Group EV1 EV2 EV3 Ev4 EVS EVE

Input 1
Input 2
Input 3
Input 4
Input 5
InpLt B
Input 7
Input 8
Input 8
Input 10

Setup orthogowélisations |

A=B [Subj 1 [Subj2  [Sub3  [Subi4  [Sub5
1 0 0

Aol OININ) = —
ololo|lo|lo|lo|lo|o| —
ololo|lo|lo|lo|—=|—=|o
[ e e § e | B B e e Y
ool =|=looo o oo
= =lOoololo|lo|o|o|lo

(dy]

LA | L4 L | [0 | [4p | 4[| [ L[| [4]p | [4]>

LA | LA L | LD | 4 p | 4[| L[ L4 [4]p | [4]p,
RIS UAST AR AR AR UIRU AR AR RT3

RILAEH A HAIRUAR LR LRI IE N IR IR 1L
RILAR TR HAIRIAR LR RIS H AR IR 1L
RILAEH AU IRIAR LR LRI AN IR TR 1L
RILARH AU ISR IR LRI AU IR IR 1L

View design | Efficiency | Done |

The implicit assumption here
° is that data from all subjects

have the same uncertainty
and that there is no
dependence between subjects

wo sy swiz swr 3 s e sus s [EREERIREMERINHEEEHEAREE, A8
5 oer iR B MR EE .

lnmrhvhwwl\)l\ji—‘l—‘@




®=®

Examples of exchangeability: sz
Two groups paired @

X| Genera

EVs ] Contrasts & F-testsl

Number of main EVs |6 3

Number of additional, voxel-dependent EVs |0 3

Paste

Input 1
Input 2
Input 3
Input 4
Input 5
InpLt B
Input 7
Input 8
Input 8
Input 10

Group EV1 EV2Z EV3 Ev4 EVS

EVE

A=B [Subj 1 [Subj2  [Sub3  [Subi4  [Sub5

Aol OININ) = —

1
1
1
1
1

RIS UAST AR AR AR UIRU AR AR RT3

LA | LA L | LD | [4p | 4[| [ L[| [4]p | [4]p,
o|o|=|=|o|olololo|o
RIARUAICH AR AR R UIEU AR AR RN 2

[ e e § e | B B e e e}

KIAIRILAR TR IR R A IRIE T3 R

ololo|lo|lo|lo|l—=|=olo

ololo|lo|lo|lo|lo|o| = —

LA | L4 L | [0 | [4p | 4[| [ L[| [4]p | [4]>
LA | LA L | LD | 4 p | 4[| L[ L4 [4]p | [4]p,

-1
1
-1
1
-1

= =lOoololo|lo|o|o|lo

KIS AR TR IR AR AR E I 3R]

(dy]

Setup orthogowélisations |

O

lnmrhvhwwl\)l\ji—‘l—‘@

cl &B
C2 B>A

View design | Efficiency | Done |

X Model

| [y

A>B Su.b]l Sub]2 Su.bjB Su.b]4 Sb]S

Assumed covariance matrix
BRI TS 2560

The implicit assumption here
is that data from all subjects
have the same uncertainty
and that there is no

dependence between subjects
REEREMERIROREREARTHEY, H8
IR ISR I



Examples of exchangeability: sz
Two groups paired mas

®=@® |X| General Linear Model

EVs I Contrasts & F-testsl O I P I P 2
Number of main EVs [ 2 rlglna erm erm
Mumber of additional, voxel-dependent EVs IIJ ] 4

Pastel Group EV1 Ev2 EV3 Ev4 EVS EVE
4B [Swb 1 [Swh2  [Swi3  [Swbd [SubiS

ol f1 2\ [T 2 [T 2 [0 2 [o 2 [0 2 [0 2
mpw2 [T 2\ [T 2 [T 2 [0 2 [0 2 [0 2 [0 2
mpwd 2 2y [T 2 [0 2 [T 2 [0 2 [0 2 [0 2
mpd (2 2y 2 [0 2 [T 2 [0 2 [0 2 [0 2
mp5 |3 2| [T 2 [0 2 [0 2 [T 2 [0 2 [0 2
mpe |3 2| [ 2 [0 2 [0 2 [T 2 [0 2 [0 2
mpw7 | [ 2 [T 2 [0 2 [0 2 [0 2 [T 2 [0 2
o8 \[« 2] [T 2 [0 2 [0 2 [0 2 [T 2 [0 2
pws \[5 2/ [T 2 [0 2 [0 2 [0 2 [0 2 [1 2
mpw1o \5 2/ |7 2 [0 2 [0 2 [0 2 [0 2 [1 2

View design | Efficiency | Done ||

(O]

X Model

mtn.h.kmwmmo—nH.

E

AB Subj 1 Subj 2 Subj 3 Subj 4 Subj S
Cl AB 1 0 0 0 0 0
C2 BrA -1 0 0 0 0 0



Examples of exchangeability: =zsmp17:
blocked ANOVA  ampzs1

|X| General Linear Model

EVs ] Contrasts & F-tests]

Number of main EVs |7 3
Number of additional, voxel-dependent EVs |0 3

Same as previous:WWe can
only swap labels within

each subject
FZBi—HE, BRI RS HATIC

Paste Group EV1 EV2 EV3 EV4 EVS EVE EV7
[A4-B~  [B>C  [SubT  [Subz  [Sub3  [Subid  [SubiS
Input 1 1 §\v L (= T (VI e [ = e (Ve [
Input 2 L N L = = (e (VI e [ = (I
Input 3 LT Y T e L (e (e (R [ I
putd f 2 S\ 1 ¢ 0 ¢ 0 1 S 03 [0 3 |0 3
put5 |2 S\ 1S 1 ¢ 0 T S |03 [0 3 |0 3
Input 6 2 3 0 3 -1 3 0 3 1T 8 0 3 ] 0 3
put7 | 3 5 |1 3 Jo I o § 03 = |0 -
Input8 | |3 3 e I T I [
mput8 | |3 S fj0 I 1 g o I 0§ 1§ @3 03
put10f 4 & f )1 & |0 L [ = [ I e L e I
mput 11y 4 5 f |1 & |1 (L [ = [ = L e I
putiz \ 4 < J [0 & |1 LU [ = [ e L e
npw13 \ [5 2f [ 2 [0 2 [0 2 o 2 Jo 2 [0 2 [1 =
npwt14 \[5 2f [ 2 [ 2 [0 2 [0 2 Jo 2 [0 2 [1 2
npwt1s \5 o [0 2 [ 2 [0 2 [0 2 [o2 [032 [1 2
Setup orthogonalisations |
View design Efficiency I Done I

[ NON ] [X| Model

1

1

1

2

2

2

3

3

3

4

4

4

5

s |

A>B B>C Subjl  Subj2 Subj3 Subj4  SubjS

o1 B 1 0 0 0 0 0 0

02 B 0 1 0 0 0 0 0

63 me 1 1 0 0 0 0 0




e0e

Examples of exchangeability: msms17
blocked ANOVA  a@ssz517

EVs I Contrasts & F-tests]

Number of main EVs |7 3

Number of additional, voxel-dependent EVs |0 3

Paste

Input 1
Input 2
Input 3
Input 4
Input 5
Input 6
Input 7
Input 8
Input 9
Input 10
Input 11
Input 12
Input 13
Input 14
Input 15

X| General Linear Model

Group EV1 Ev2 EV3 Evd4 EVS EVE EV7

BB [B-C  [SwjT  [Subz  [Sub3  [Subid  [Subs
T3 8 [0 [ g [0F 0g [0oF 03
T3 L L (VT (O L = I [
T3 03 s Py oS 05 |05 03
2 3 Ty 0y 0y sy j0s 05 |03
2 3 L1 L 1 [ L e (e
2 3 0 s j0s jryojos oS oS
i s L L (1 1 L L I [
32 |2 [ 2 02 o2 [ 2 [p2 [03
32 02 [2 [02 02 [ 2 02 03
4 3 7T H [T 0 3 T 0 3 e 0 3
g 3 [[2 [ 2 02 |02 02 [ 2 [0d3
4 3 0 3 -1 3 0 3 0 3 0 3 7 H 0 3
52 12 02 [062 o2 [52 [g2 [ =
5 [ -1 3 1 H 0 3 0 3 0 3 0 3 1 H
52 02 [[2 [02 02 [82 [g2 =

Setup orthogonalisations

[ NON ]
1
1
1
2
2
2
3
3
3
4
4
4
5
s
5
cl AB

c2 BE>C
3 At

View design | Efficiency l

Done l

1

B

>
0
1
1

C

X| Model

il

Su.bjl Su.b:|2 Sub:|3 Su.bj4 Su.b]S

U

IJ

U

U

IJ

Assumed covariance matrix
BRIREIH TS 256

Assumptions: All subjects
from the same “population”
no dependence between
subjects and “compound
symmetry” within subjects

Bz
E%&WV\]“EASO‘%””



e0e

Examples of exchangeability: msms17
blocked ANOVA  a@ssz517

EVs I Contrasts & F-tests]

Number of main EVs |7 3

Number of additional, voxel-dependent EVs |0 3

Paste

Input 1
Input 2
Input 3
Input 4
Input 5
Input 6
Input 7
Input 8
Input 9
Input 10
Input 11
Input 12
Input 13
Input 14
Input 15

X| General Linear Model

Group EV1 Ev2 EV3 Evd4 EVS EVE EV7

BB [B-C  [SwjT  [Subz  [Sub3  [Subid  [Subs
T3 8 [0 [ g [0F 0g [0oF 03
T3 L L (VT (O L = I [
T3 03 s Py oS 05 |05 03
2 3 Ty 0y 0y sy j0s 05 |03
2 3 L1 L 1 [ L e (e
2 3 0 s j0s jryojos oS oS
i s L L (1 1 L L I [
32 |2 [ 2 02 o2 [ 2 [p2 [03
32 02 [2 [02 02 [ 2 02 03
4 3 7T H [T 0 3 T 0 3 e 0 3
g 3 [[2 [ 2 02 |02 02 [ 2 [0d3
4 3 0 3 -1 3 0 3 0 3 0 3 7 H 0 3
52 12 02 [062 o2 [52 [g2 [ =
5 [ -1 3 1 H 0 3 0 3 0 3 0 3 1 H
52 02 [[2 [02 02 [82 [g2 =

Setup orthogonalisations

[ NON ]
1
1
1
2
2
2
3
3
3
4
4
4
5
s
5
cl AB

c2 BE>C
3 At

View design | Efficiency l

Done l

1

B

>
0
1
1

C

X| Model

il

Su.bjl Su.b:|2 Sub:|3 Su.bj4 Su.b]S

U

IJ

U

U

IJ

Assumed covariance matrix
BRIREIH TS 256

Assumptions: All subjects
from the same “population”
no dependence between
subjects and “compound
symmetry” within subjects

Bz
E%&WV\]“EASO‘%””



e0e

Examples of exchangeability: msms17
blocked ANOVA  a@ssz517

EVs I Contrasts & F-tests]

Number of main EVs |7 3

Number of additional, voxel-dependent EVs |0 3

Paste

Input 1
Input 2
Input 3
Input 4
Input 5
Input 6
Input 7
Input 8
Input 9
Input 10
Input 11
Input 12
Input 13
Input 14
Input 15

X| General Linear Model

Group EV1 Ev2 EV3 Evd4 EVS EVE EV7

BB [B-C  [SwjT  [Subz  [Sub3  [Subid  [Subs
T3 8 [0 [ g [0F 0g [0oF 03
T3 L L (VT (O L = I [
T3 03 s Py oS 05 |05 03
2 3 Ty 0y 0y sy j0s 05 |03
2 3 L1 L 1 [ L e (e
2 3 0 s j0s jryojos oS oS
i s L L (1 1 L L I [
32 |2 [ 2 02 o2 [ 2 [p2 [03
32 02 [2 [02 02 [ 2 02 03
4 3 7T H [T 0 3 T 0 3 e 0 3
g 3 [[2 [ 2 02 |02 02 [ 2 [0d3
4 3 0 3 -1 3 0 3 0 3 0 3 7 H 0 3
52 12 02 [062 o2 [52 [g2 [ =
5 [ -1 3 1 H 0 3 0 3 0 3 0 3 1 H
52 02 [[2 [02 02 [82 [g2 =

Setup orthogonalisations

[ NON ]
1
1
1
2
2
2
3
3
3
4
4
4
5
s
5
cl AB

c2 BE>C
3 At

View design | Efficiency l

Done l

1

B

>
0
1
1

C

X| Model

il

Su.bjl Su.b:|2 Sub:|3 Su.bj4 Su.b]S

U

IJ

U

U

IJ

Assumed covariance matrix
BRI TS 256

No lon

> allowed
B RT3

Assumptions: All subjects
from the same “population”
no dependence between
subjects and “compound
symmetry” within subjects

Bz
E%&WV\]“EASO‘%””



My advice: Keep it simple!

pbaEy (R e
Each subject BRVEIN: RIFEIE

scanned like this
SMEHERERRRE

[X| Model

Painl Pain? Paind paind
¢l Little pai 1
C2 More pain
€3 Lots of pai u
c4 Ouch! 0 0 1

Taklng 4 contrasts

to 2nd level
K EH4NI

We want to find areas that

respond “linearly” to pain.
B VR R A MR R,

o
o = O
= O o
o o o



My advice: Keep it simple!
WA (A5

Fach subject Repeating this for four subjects
scanned like this
BadiamER PR 4/\%}%5&%%1_1%

KX tE | 1

[X] Model 1

1

2

2

&

2

3

3

3

3

4

4

Taklng 4 contrasts ;
to 2nd level Pa1n2>1 Pa1n3>2 Pa1n4>3 Subjl Sub]2 Sub:|3 Subj4

%‘-:ﬂ(qzﬁ“/l\yjtt Cl Linear Pain



My advice: Keep it simple!
WA RIS

X/ Model

Eiiii! | You have to assume
this covariance matrix

Pa1n2>1 Pa1n3>2 Pa1n4>3 SU.b]l Sub]2 Su.b]3 Su.b]4

.h.b.h.hwwwwtommmt—tn—*r—tr—t.

€l Linear Pain P ’JZ\EDL”E 121_ TZ]‘E%%EBE
And ﬁgure out this Why put yourself
contrast through all that pain?

HIEFEIXFIREXL WA B RS EE?



My advice: Keep it simple!
WA ISR

X Model

Pa 1 Pa 2 Pa 1n3 p ind
€l Linear pail

When you can take a
single contrast from

the first level
w1t ¢ AT I B 5 — 7 A 2 7 A

And get this at the

second Ievel

""_7J<:F15 23X
® O ® X/ Model

N

Linear Pai
Cl Linear Pain 1

Assuming only

symmetric errors
(BRI FRIRE

Much nicer, no!
B, ~208?



Outline X 2N

Null-hypothesis and Null-distribution FRI1gMED
Multiple comparisons and Family-wise error Z & EERFEEIRR
Different ways of being surprised S SENE AR

® Voxel-wise inference (Maximum z) KRR (&Kz)

® Cluster-wise inference (Maximum size)  FE/KF#EMT (RART)
Parametric vs non-parametric tests Z W vsIEZ 1050
Enhanced clusters 1BoR AR

FDR - False Discovery Rate FDR-f5I= & I



Clustering cookbook siss

Instead of resel-based correction, we can do clustering:
BR T ETFreselfIRIES, HATREME:

Z stat image z{EE

Threshold at

(arbitrary!) z level
EKFEER)NEE




Clustering cookbook siss

Instead of resel-based correction, we can do clustering:
BR T ETFreselfIRIES, HATREME:

Z stat image z{EE

Threshold at

(arbitrary!) z level
EKFEER)NEE

Form clusters from surviving voxels.
MR R RZ AR

Calculate the size threshold u(R,z).
T EAR/NEEu(R.2)

Any cluster larger than u “survives” and we reject

the null-hypothesis for that.
FERTuIEE, HIMELTRIR



How do we choose the

(arbitrary!) z-threshold?
Bl V2 B () 12 E R 2

This is arbitrary and a trade-off ;X — M hEEM




How do we choose the

(arbitrary!) z-threshold?
R B () M2 E A7

This is arbitrary and a trade-off X2 — /=N

|. Low threshold - can violate RFT

assumptions, but can detect clusters with large

spatial extent and low z z-threshold .

{RFE- AT 8EE R RFTIRIR, {BERJCAMGNEI BB AT 8
SEEFRIEz895%



How do we choose the

(arbitrary!) z-threshold?
R B () M2 E A7

This is arbitrary and a trade-off X2 — /=N

|. Low threshold - can violate RFT
assumptions, but can detect clusters with large

spatial extent and low z z-threshold .
{REE- A BEIE R RFTRIR, ER]LAMQNEI R ERAZTE]

SCEIAIBEzAY5R

2. High threshold - gives more power to z-threshold -

clusters with small spatial extent and high z

=E{E- A= ESC R B S R R M E S I6E



How do we choose the

(arbitrary!) z-threshold?
R B () M2 E A7

This is arbitrary and a trade-off X2 — /=N

|. Low threshold - can violate RFT
assumptions, but can detect clusters with large

spatial extent and low z z-threshold .
(RE{E-FIREIE R RFTRIR, {ERIMGNEIBEBAZEE

SCEIAIBEzAY5R

2. High threshold - gives more power to z-threshold -

clusters with small spatial extent and high z

=E{E- A= ESC R B S R R M E S I6E

Tends to be more sensitive than voxel-wise corrected testing
i) F oA RAR LI I B8 SRk

Results depend on extent of spatial smoothing in pre-processing
FERBURT IR B BNTEE



TFCE

Threshold-Free Cluster Enhancement 3B &1 0%

[Smith & Nichols, Neurolmage 2009]

* Cluster thresholding: &

* popular because it’s sensitive, due to its use of spatial extent EXx#E=(g
SEEANERSEREURE, ATARIT

e but the pre-smoothing extent is arbitrary EzmEsREEs

* and so is the cluster-forming threshold s s A b

= unstable and arbitrary FiEHmEE

®
TECE ’ . PRETFCEEET 81 TTakATLE
* integrates cluster “scores S5 49155) B (ERZXE)

1F70 0
over all possible thresholds FRERY P
EOMA R ERENK ST
e output at each voxel is measure

of local cluster-like support ]

S MEERE BBELS0NE /" _ A\
* similar sen5|t|V|ty to optlmal The TFCE value at point p is given by the sum,

cluster-th resholding, but stable over the shaded area, of the score from each

contributing incremental section:

and non-arbitrary TFCE(p) =3 e(n)f . ht

5 eEfEESRIEAER, EREENER




Qualitative example

E £ 5+

original mwizg
signal
- TFCE

enhancement
TFCEIZEH




TFCE for FSL-VBM

TFCE

0.003

p (corrected)

0.05

cluster-based (red)
voxel-based (blue)

ETHR(4D)
ETAE ()




TFCE for TBSS

controls > schizophrenics 58 > g8z

P<0.05 corrected for multiple comparisons across space, using randomise
BB ZEIERIRIE, {£Arandomise TH

cluster-based:
BT 5%
cluster-forming
threshold =

2 or 3
FafZRY [F{E=28)3

TFCE




Outline X 2N

Null-hypothesis and Null-distribution FERIZHNZED

Multiple comparisons and Family-wise error ZE LR IRIEIRER

Different ways of being surprised IRENAE AN
® Voxel-wise inference (Maximum z) KRR (&Kz)

e Cluster-wise inference (Maximum size)  FR/KFHMT (FART)
Parametric vs non-parametric tests Z W vsIEZ 1050
Enhanced clusters 18RI PR

FDR - False Discovery Rate FDR-f51R & IR



False Discovery Rate
R R

FDR: False Discovery Rate swizxm=
A “new” way to look at inference. —msraosmurszt

Uncorrected (for multiple-comparisons): #zE@=ts)

Is equivalent to saying:“l am happy to nearly always say
something silly about my experiments”.

FFin: “BRARHNREMINESE—ERBEIC, ”

Family-Wise Error (FWE): sizz

Is equivalent to saying:“| am happy to say something silly
about 5% of my experiments”.

ESTFH: HREN L% TR RS LRI

False Discovery Rate swmizxm=

Is equivalent to sayin%:“l am happy if 5% of what | say about
each experiment is silly”
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False Discovery Rate
R R

FDR: False Discovery Rate swizxm=
A “new” way to look at inference. —msraosmurszt

Uncorrected (for multiple-comparisons): s&rzsts)
* Is equivalent to saying:“l am happy to nearly always say
something silly about my experiments”.
FFin: “BRARHNREMINESE—ERBEIL., ”

« On average, 5% of all voxels are false positives
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Family-Wise Error (FWE): sizz
 |s equivalent to saying:“l| am happy to say something silly
about 5% of my experiments”.
BT “BRENAS%RLNER DG —ERBEIR”,
* On average, 5% of all experiments have one or more false
positive voxels Fi9fE, AAZIRHAE%EE— NS MEMEMEERE

False Discovery Rate smizxm=
 Is equivalent to sayin%:“l am happy if 5% of what | say about
each experiment is silly”.
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* On average, 5% of significant voxels are false positives T3
mE, SHHEEREZMRAE.



Little imaging demonstration.
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uncorrected voxelwise control of FP rate at 10%
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control of FamilyWise Error rate at 10%
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occurrence of FamilyWise Error
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control of False Discovery Rate at 10%
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FDR for dummies
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Makes assumptions about how errors are
distributed (like GRT). migizzs#muors=t

Used to calculate a threshold. sF+=mm.

Threshold such that X% of super-threshold

(reported) voxels are false positives. +uE@Ex%@REdR
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Threshold depends on the data. May for example
be very different for [| 0] and [0 1] in the same
study. BERATRIE. B— 1 HRHN [ 0] [0 1] THERAZESR.



