~+FEAT 3 - Advanced FMRI Analysis

FMF%IB‘
S RMRID T

Pipeline overview Advanced designs:

IR RAZIELA e Parametric designs and F-
Advanced preprocessing tests sEugitAFeR
steps * Factorial designs and
BRI Interactions
* Motion artefact
. IR E
correction HFixit IR EER |
LR TE * Contrast masking
e Physiological noise X tbmask
correction e Correlated EVs
HEREIE * Design efficiency
Demeaning EVs N
RITA N =
EVsEiIE
e F-test riam

PXENE: RPT LTS
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Pipeline overview
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FMRIB'

Generic blueprint

|. Data acquisition ##E3kEx
2. Data preprocessing #iEfiste
3. Single-subject analysis s/ it

4. Group-level analysis ExFE5H#r

5. Statistical inference :it+itin
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a

Aims:

N

<

{fift SNR

Obtain good
quality and
consistent
data
RN 8 —
i

Optimise
SNR

4

|. Data acquisition
KRR

2. Data preprocessing
3. Single-subject analysis
4. Group-level analysis

5. Statistical inference

=~ Generic blueprint

/Keeg T2 mindﬁ
e Many trade-
offs =g

e Consider
drop-out and
distortions
EBESERTAE

e \What are the
most
important
regions?

\ BEENEREMHA




& [
"‘3\04|

= (eneric blueprint

@« A

Aims:
e Reduce noise in
data Eibigs

e Prepare data for
analysis
EEBIEDT

e Prepare data for
group
comparison
FAKF LRI

< 4

|. Data acquisition

2. Data preprocessing

LRI

3. Single-subject analysis
4. Group-level analysis

5. Statistical inference

« h

Keep in mind:

e Requires careful
checking
BEFMGE

e Can add
additional steps
if necessary
WENE, FIAINE
ki

< 4
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* Generic blueprint

a

Aims:

N

Obtain
measure of
Interest for
each subject
(often an
image)

SREVES PRI R

R9FENR
4

|. Data acquisition
2. Data preprocessing

3. Single-subject analysis
BMRILA D

4. Group-level analysis

5. Statistical inference

a

Keep in mind:

N

Differs
considerably
between

modalities
FRIESHES

4
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= (eneric blueprint
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Aims:

e Compare single-
subject results
across group
EEHR 4 (8] S8 AR IR AY
45

e Group mean/ t-

test/ correlation
BIYE/THLG/HE X

< 4

|. Data acquisition
2. Data preprocessing
3. Single-subject analysis

4. Group-level analysis

HIKFE D HT

5. Statistical inference

a

N

Keep in mind:

Can have
additional layer
to average over
sessions AILAER
Hth A E ETFL

session|8]AY 45

e Account for

<

confounding
variables

RREEEE
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= (eneric blueprint

@« A

Aims:

e P-values r

e Reliability of
results
=R S

e Generalise to

population
25 B TSR

< 4

|. Data acquisition
2. Data preprocessing
3. Single-subject analysis
4. Group-level analysis

5. Statistical inference

SRITHERT

« h

Keep in mind:

e Need enough
subjects to have
power EZE E %R
Wil BEE BRI
TR

e Cannot interpret
null results
TNEERBIAEENSG
R

< 4




-~ What we covered so far

x
a4

Structural Brain Bias field Segmentation VBM or vertex
data: extraction correction 452 analysis

N B2 IRIFIRIE VBM4#7
L EHE Registration &
................................... - W [ g sraton ]
L W | SV 8T 1%
Functional Motion Slice timing Spatial Temporal
data: [ correction ] correction filtering ] [ filtering ]
THREENIE KT IE F= [BIR [B)#7F LE = [B)E IR B BRI
i
i [ Regressors & First level
I contrasts [ GLM ]
i BIF&IIEE E—KFHGLM
g

Regressors & Group level Thresholding
contrasts GLM & correction

383 4K FEGLM BRAIAIE




) Preprocessing

Structural Brain Bias field . VBM or vertex
data: extraction correction Segmentation analvsis
' A2 ER {RIFIRIE y

L RN Registration &
Z A/\/\/\/\ unwarping
¥ ] FC &R

Functional [ Motion ] " Slice timing ] [ Spatial ] [ Temporal ]
_ correction correction filtering filtering
data: SLENHFIE _ EENEFE IR A L R
IhEEEN IR

..................................

Regressors & First level
contrasts GLM

Regressors & Group level Thresholding
contrasts GLM & correction




Structural preprocessing summary
G HGIA R

Brain extraction Remove non-brain tissue to help with

FSE registration. Needs to be very precise.
BIRIFMAER, X—SFEIFE/ID

Bias field correction Corrects for B1 inhomogeneities

Imizn%rLE HIE E— 4 RAVAEE L

Registration Put images into same space (standard

A space for group analysis)
BEGREIE—TMMEZE, A ZRRAED TS

&



fMRI preprocessing summary

Brain extraction
b2 HY

Motion Correction
L IE

Slice Timing

Z IR [8) ¥ 1E

Spatial Smoothing

/88

Temporal Filtering

B [B) 38R

Registration & unwarping

Fio &R

LORE(R TN I 1A

Remove non-brain tissue to help with
registrationf5[RFANZE 23 F5 BhEC it

Get consistent anatomical coordinates (always

do this) SREX—EIERVLE T 44T

Get consistent acquisition timing (use
temporal derivative instead)

SREX—EUMERVAT (B &
Improve SNR & validate GRF
iR S {EIRE&IVNE S HrENL7 5 Tn

Highpass: Remove slow drifts

BlRIgRES

Unwarping corrects for BO inhomogeneities.
Registration images into same space (standard
space for group analysis)RRIEBOARI M, JEE
GEERIE—=E (BTHEDFaRESE)



& Single-subject analysisssiss

val7=

Structural Brain Bias field Segmentation VBM or vertex
extraction correction analysis

diate;. 4R ER BT 7 VBMH
L EE Registration &
[ unwarping ]
o /& 3T R
Functional Motion Slice timing Spatial Temporal
data: [ correction J [ correction J [ filtering } [ filtering J
THEEENIE LENHFIE F= [BIR (8] %7 LE == [B)RIR B (B3RO

i
=%

Regressors & First level
contrasts GLM

EEESS g FE—IKFEHGLM

L [ ] ]
g
H

Regressors & Group level Thresholding
contrasts GLM & correction




Structural single-subject summary
MBS

Segmentation Tissue-type segmentation (FAST), sub-
452 cortical segmentation (FIRST), white
matter hyperintensities (BIANCA)

PARBRE, RERMNEMDE, BRESE®E

Voxel-based morphometry To detect diffe.rences in Ic?cal grey matter
volume. Jacobian modulation and spatial

ETARZIASNE smoothing.

KMBERRFRANE R, JacobianlBAZE =8]8

Vertex analysis To run shape analysis on subcortical structures.
first_utils uses bvars output from FIRST to
IE{E DT perform vertex analysis (4D output image of all

subject meshes)

AT RITRE TR DM, ERERFIRSTRNEG
RAHTIEED T



fMRI single-subject summary

EVs/ regressors
LT /B3R F

GLM
— AR 1E =R

Contrasts (F or t)
XL (FIOBGER TAGES)

THRER BRI L IR 5k

Design matrix: model of predicted responses
based on stimuli presented at each time
point

IRITAERE, ETRIAZIAIET B RAIXT NN 3SR
TR R

Estimate parameter estimates for each EV
so that the linear combination best fits the
data

SIETEVRIRITSE (H&EAS P RTINS
i)

Maths on parameter estimates to ask
research questions. Result is a COPE image
per contrast

MARETNSRET, EERIWE (B L
HE—)



A Group-level analysisaiess

Structural Brain Bias field Segmentation VBM or vertex
data: extraction correction 52| analysis

e B2 ER {RiF R IE VBM#7
L EE Registration &
[ unwarping J
FC &R
Functional Motion lice timing Spatial Temporal
data: [ correction ] correction filtering [ filtering J
THEE#IE LENHFIE F= [BIR [B) %7 LE = 8] R B (B3RO

Regressors & First level
contrasts GLM

EEESS g E—IKFHGLM

=

Thresholding
& correction

a 0O 0O 0O 1O 0O 00 0D M b b ke b ke e b



Group-level analysis summaryaxssirma

EVs/ regressors Design matrix: one entry per subject. Can describe
ST I T2/ EAEF subject groups, confounds etc

TR T8 E—TRA, AJRERBIRAER

GLM Structural: inputs are smoothed, modulated GM volumes
— RS (VBM) or single subject subcortical meshes (vertex
analysis)
) MARNBEGETE, BRENRSEERE T RIINKEE TS
14

fMRI: inputs are first-level COPE and VARCOPE images.
fMRI: & N\ BYEfirst-levelflcope/varcopeZE R

Contrasts (F or t) Structural: tests differences in GM density or shape
SPEE  (FABGER TAGSS) R AR PR AR IR ZE =

fMRI: Each group-level contrast is tested for each of the
subject-level contrasts

fMRI: X EBRHINKFERELIR G R H1THKFE LR



- Statistical inference sz

Structural Brain Sl ﬁt‘."'d Segmentation | | VBM or vertex

data: extiamon correci ion 453 analysis

iy A2 BY {RiH % 1E VBMZ 1h

L EE Registration &
unwarping

fic & 1

Functional Motion Slice timing Spatial Temporal

data: correction correction filtering filtering

THAEELIE SLEH4T [= [B]BY (8] 5F IE B8] 5 B] 8 R

GLM
FE—KFHGLM

contrasts
EJEESS

Regressors & [ First level }

Regressors &
GLM
HKFGLM

contrasts

& correction
EIEESS

Group level { Thresholding




Statistical inference summary

Fixed effects

Vs

mixed effects

B E BN VSTR S BN
OLS

Vs

FLAME

Vs

Randomise

Multiple comparison correction
(FWE/ FDR)

Averaging across multiple sessions

Generalisation to population

Quick, doesn’t use VARCOPEs

Uses COPEs & VARCOPEs

Non-parametric

Gaussian Random Field (voxel or cluster
based)

TFCE



’.Wlk»

-~ VYVhat we covered so far

Structural Brain Bias field VBM or vertex
. extraction correction Segm?ntatlon analysis
data: - zu
. X2 EX {miH IR E BM 41

L EN R
Preprocessing
Functional Motion Slice timing Spatial
data: correction correction filtering
IjJ Ab*&]:E SL N )—='z—\I‘Eﬂ HT_“\ET.I%ﬁJ-.E ?fﬂ»ﬁi&
Regressors & First level ) . .
contrasts GLM Single-subject analysis
[E])3&ITLE E—KFHIGLM

Group-level analysis Statistical inference
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Looking ahead:
resting state ses
diffusion s

arterial spin labeling
BEIMCR




FMRIB'

Generic blueprint

|. Data acquisition ##E3kEx
2. Data preprocessing #ifistiE
3. Single-subject analysis s/ #ida9H

4. Group-level analysis kT

5. Statistical inference #:ititur



-~ Resting state analysisssssn

|. Data acquisitionsuesxm .  Consider using multiband
EIRIERZINERMBFS

2. Data preprocessingsizmsaz

3. Single-subject analysisssits

4. Group-level analysisaxssi

5. Statistical inferencesitswus



Restlng state analysissesson

|. Data acquisitionsgsm  —  Consider using multiband

Need to apply extra noise-reduction

2. Data preprocessingszmuz— —_—
BEABTOMOEBEE (RIIHHHH)

3. Single-subject analysissitsi

4. Group-level analysisaxes+

5. Statistical inferencesitissr



Restlng state analysissssson

|. Data acquisitionszsa —  Consider using multiband

2. Data preprocessingsumaz_,  Need to apply extra noise-
reduction steps (ICA)

3. Single-subject analysiszugisi

Group ICA+dual regression/

Network analysis (FSLnets)
HOMICA+IR B/ WNEE

4. Group-level analysisaxssnr_,

—

5. Statistical inferencesitswus



TSANT

= Diffusion analysissusr

Diffusion directions3RELEA [T

|. Data acquisition@;@m — Blip-up/blip-down[a]_L/[E) 4R #5375 [a]

Multi shellZ Z

2. Data preprocessingsizmsz

3. Single-subject analysis
BT

4. Group-level analysisaxssi

5. Statistical inferencesitissr



e Diffusion analysisss

Diffusion directions
o Blip-up/blip-down
|. Data acquisitiongzsm  — Multi shell

2, Data Preprocessin géﬂ}ﬁﬁﬁﬂ Need to correct\ fc?r eddy currents
EEXIRIMATLE

3. Single-subject analysis
BT

4. Group-level analysisaxss

5. Statistical inferencesitus



e Diffusion analysisss

|. Data acquisitiongzsm  —
2. Data preprocessingsuzmaz .

3. Single-subject analysis —.
BT

4. Group-level analysisaxss

5. Statistical inferencesitswus

Diffusion directions
Blip-up/blip-down
Multi shell

Need to correct for eddy
currents

Fractional anisotropy/ mean diffusivity/
tractography

280 F FENE ST BRI R RIE IR



ASL analysis

label and control images FRICHIZHIE &
— background suppression & = /%l
calibration image 1B

|. Data acquisitionszss
2. Data preprocessingsizmsiz

3. Single-subject analysis
BT

4. Group-level analysisaxes+

5. Statistical inferencesitiss



ASL analysis

label and control images

|. Data acquisitionszsm —>  background suppression
calibration image

2. Data PI"GPI’OCGSSing%@Ei‘ﬁ%Iﬁ—' label-control subtraction
Fric-iTHlE G EE

3. Single-subject analysis

B AT label-control subtraction

4. Group-level analysisaxssi

5. Statistical inferencesitis



ASL analysis

label and control images
—  background suppression
calibration image

|. Data acquisitionsizsm

2. Data preprocessingsizmst e

—>

label-control subtraction
3. Single-subject analysis

BHIR o Perfusion weighted image J&;E N R AR
Absolute perf. measurements #8337 =

Partial volume correction 85 AFR1Z 1E

4. Group-level analysisaxssi

5. Statistical inferencesitissr
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Advanced preprocessing
2P T3




il Case Study:

Motion Artefacts
=125 SLEhE

Scenario:
Young/elderly/sick subjects that move a lot
during an FMRI study
FRANZBEANBAEMRIFANRS
Problem:
Motion correction does not fully correct for excessive
motion XTI ZRIXKEN, (KN IEZENIERY,
Sudden motion creates massive distortion (>12 DOF)
RRMENANZIERARENES T (KT 127 BHERIEH)
Smaller, slower motion induces intensity changes due to
physics effects (e.g. spin history) and interpolation
N BRAENSHESEERERMN, ATYENGRR (LEWBHERNE) MiEE
Solution:
Remove or compensate for motion artefacts #&Fa&E %Mz k]




A4 Motion Artefact CorrectionstanseiE

Options for motion artefact correction:
|. Add motion parameters as confound EVs IZA1kIZBUEN N E =

2. Detect “outlier” timepoints and remove them via confound EVs
WlXEREE, FAEBER
3. Use ICA (MELODIC) denoising for cleanup {EHICAERIZE
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Al Motion Parameter Confounds

FMRIB'

Add the 6 parameters (rotations and translations) as measured by MCFLIRT to the
GLM as confounds - simple button in FEAT et sianssmoimes

e Removes any correlated signals (since they are confounds) R ERIHEXEIE

artefact =

B LB RN LB E > A EL M R s

e Assumes that MCFLIRT estimation -
iS accurate BigMcrLRT{EH 2 ERA I
o

B

B

o

2}

5l

5]

e Problematic if motion parameters
and EVs of interest are highly

correlated (stimulus-correlated motion)
MRS BABMBIIERRX, BABIETEFEDD .

- can result in loss of activation aamgzms e el
- orthogonalising EVs does not change result ssevstvEnstrirapmss

e Also possible to include non-linear (e.g. squared) parameters tatasisitinss
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Al Outlier Timepoint Detection

FMRIB'
Use fsl_motion_outliers to detect timepoints that display large intensity differences to the

reference timepoint (after motion correction)
(ERSISSEMERTIS B8 SIS S BEE RERANRE S

Removes all influence of the timepoints declared as outliers but does “e any

bias (unlike “deleting” timepoints from data)
B S S EN 8RR, BRTFFEEMmFH

Uses one extra confound regressor per outlier timepoint
SRR ENESA— I DERET

* the regressor is zero at all timepoints except the outlier
ZMERE, BT SR ENSMIGREL R0

Confound matrix with

Implemented via confound matrix in the GLM cumeshisminzmiss 2 outlier timepoints

* another simple button in FEAT s—wmseorearizim

Does not assume that MCFLIRT is accurate #rEigMcrLrRTS EHEL
or that the effect is linear sizm=si

Can cope with very extreme motion effects s st
but leaves other timepoints uncorrected EeaBET— LSRR EHELH

Can be combined with other correction methods sus=tsmEsrss



- ICA denoising cus

Use ICA (MELODIC) on individual runs
to identify components related to motion
artefacts and remove these from the 4D
data smEmIcAS rBARIAENE XmS, AR

e Requires identification of components
BEHAR LA S

 manual classification zzmix
* (semi-) automated classification
(FIX/ AROMA) ) marnx
e Can also be combined with other
cleanup techniques sumsnmuseszsaes
e |CA denoising should be done
first ICAxs e
e Can also be used to identify and
remove structured noise that is not

related to motion
BT I P SR AR R A S T S ROIR B L1

~| | Melodic IC classification 5]
ymponents | Labels
10 | ¥Unkno =
1 ‘ ¥Unkno
12 ‘ *Unknot H
13 | %Unkno
14 ‘ ¥Unkno
L ‘ “Unknos
1 ‘ *Unkno
L ‘ %Unkno
1 ‘ XUnkno
L ‘ ¥Unkno
‘ xUnknos
Pl | ¥Unkno
‘ ¥Unkno
‘ *Unknot
P4 | %Unkno
‘ ¥Unkno
‘ “Unknos [+]
Loadiabels | savelabels [ Cleariabeis
Tirme series 2 ) Power spectra 3 5
0 [ — melodic_IC [component 23]| [ — melodic_IC [component 23]‘
1500
-2
-0 - (1000
=2
5000
-—4
-—6 -lo
. 0 200 400 600 800 10 0.00 0.05 0.10 0.15 0.20 0.25 0.30




- ICA denoising cus

e Typical motion components display ringing around brain edge 83k R ETELEB NS
* Can also note sharp effects in timecourses g & Etha KM
* There are typically a large number of noise components (70-90%) FEAZMIZERS

Classic motion Multiband motion Susceptibility motion
22 BL3L ] MBF 5K 5) R R R D

White matter 8 & Sagittal sinus KIRE Cardiac/CSF /0\Bk



un Case Study:

FMRIB.
Physiological Noise Correction
FEIREHTIE

Scenario:
FMRI study of the brainstem Tz

Problem:
High levels of pulsatility and respiratory effects in the
brainstem and in other inferior areas
T M BB ER AN X A9=2 00
Solution:
Use Physiological Noise Model (PNM) to correct for
physiological noise &4 @R EAPNMETERS

Requires independent physiological measurements
EoE R LRV NS B = v



_ il Location of Effects

Cardiac effects typically occur: Cardiac
* near vessels and areas of CSF
pulsatility

IDER RB9RN & A 7E I
& CSFX i [ m

Respiratory effects typically occur:
* in inferior areas

EBAM X
* near image edges

ESUESIESUE
e throughout the grey matter

FRA Bright & Murphy, Neurolmage, 2013



Ay Physiological Measurements

Pulse Oximeter #5gx

Need to measure cardiac and

respiratory cycles.
HEMNS O IEIRIEIA L

Several options available - the easiest
are: —LERTBURERRY B FE

Also record scanner triggers

from the scanner console
o . RIE R R R S
AT L TR Triggers are essential for accurate

. Maw
. 0"...‘ ..‘n. y

; -
L. "
’ N T aaeeee YT

Y timing over the course of the
0“.:.0' . 5

‘ i . - - . ¢’ °

i RIS aanres b | experiment. Beware of standard

. ":.‘ Pog o-:..--v".;:.fv' 4. ¥ ;o' .. | . o o o
Nl SR N scanner recordings and timing drift

5 "'n .,
-~._ : ] e en -y !
,‘:" ";‘-: 9!!!!:“";.' ol

el SR . orrescalings. trigger
. ; T ERNNEEMIFEELE, EEAMM EE ARE
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Al PNM

FMRIB'
FHEIRAEE
Physiological Noise Model (GUI) . .
Requires text file with

X P physiological recordings

— Input
aput Physiologica Recor@ iﬂl (cardiac, respiratory,
triggers) EEICREBESHXM

Input TimeSeries (4D)
Column number of dat- W W
(B4EOBE. TR, FHiEfE =)

Sampling Rate (Hz) ;' TR (sec)

-1 Pulse Ox Triggers
“~ Up ~, Down -, Interleaved Up - Interleaved Down

Slice Qrder:
—Output Peak detection in
Output Basenarne | & ‘ physiological trace needs
_Zvrsderfor . Vs manual checking via webpage
Order for Respiratory EVs ﬁ EIETE ;EJ: EFI ﬁqu'l%$ﬁ;m%% JEL—J-
Order for Cardiac Interaction EVs m lX_X'I ﬁﬂ'fj’%ﬁjﬂ\_‘té
Order for Respiratory Interaction EVs |0 3
4 RBVT 1 HeartRate _1 CSF / ‘
| 1 "’ ".,n I "‘k’n,“ |" I\ |l ‘|".|‘ l'm| 'l || lll". /
\ | /

P Advanced Options

50




/:é\. 'l' '
Al PNM

FMRIB'

Physiological Noise Model (GUI)
X PNM
— Input
Input Physiological Recordings | _Ql
Input TimeSeries (4D) | =

Column number of data: Cardiac|4 = RespiratoryIZ - Scannertriggers|3 -

1 Pulse Ox Triggers Sampling Rate (Hz)|ZDD - TR (sec) |3 3

Slice Order: ™~ Up -, Down -, Interleaved Up - Interleaved Down
—Output
Output Basename —— — = ‘
T EVs—" ~—
fﬁr for Cardiac EVs 4 3 \
Order for Respiratory EVs 4 3
Order for Cardiac Interaction EVs m

LIL

Order for Respiratory Interaction EVs EI

\\RVT‘\" HeartRate _i CSF//

P Advanced Options
Go | Exit |

Help |

Need to specify what type of
corrections: EEmiAtALRNHE

- Fourier series @z
(harmonics / shape) gamzk

- Interactions %z
(resp x cardiac)

NB: higher orders = better fit to shape,

but many more EVs and so less DOF
FEN=BIFHMATAR, BREMESEVMTIRFRIEE S
Gl

- RVT
(resp volume per time) mmsirssz

- HeartRate =
- CSF fXB& iR



A Use in FEAT

FMRIB'

e OO0 \| FEAT - FMRI Expert Analysis Tool v6.00

First-level analysis —-| Full analysis —-|

Misc I Data] Pre-stats Stats l Post—statsl Registrationl

I~ Use FILM prewhitening

Don't Add Motion Parameters — I

Voxelwise Confound List] > 9

BETA OPTION: Apply external script|
_1 Add additional confound EVs

Model setup wizard

Full model setup

| Save L.Hlliilll!lllii.

=

PNM GUI creates a set of
files suitable for use as

Voxelwise Confounds in

FEAT
PNMER R EIZERT RARN T BRI
— RISt

)




.- Results: Pain-punctate arm

ERIH: HMRARFELR

With PNM Without PNM Both
(i PR A SRR Y RAEFEBIRE SR 58



FMRIB'

Demeaning EVs
SEVEEN



BOLD Contrast

Demeaning
at the group level

mumford.fmripower.org/
mean_centering/

HIKFEIIEN
o ©®
e
o
o
@

0

R (your continuous covariate)

EERNEE

e.g. reaction time KRzft



’ mumford.fmripower.org/

;‘, |
FaSA N
TO0\Y,

I 0 - o mean_centering/
Demeaning
AEN
)
p
S
c
o)
O
a
—
o,
)
° |
0 . .
R (your continuous covariate)

EERNEE

e.g. reaction time KRzft



.%JJ\
FMRIB'

/ r1\

F2

o

B
]

BOLD Contrast

Demeaning
AENL

mumford.fmripower.org/
mean_centering/

0 : :
R (your continuous covariate)

EERNEE

e.g. reaction time KRzft



amailll
FMRIB'

fo—

Demeaning
AEN

mumford.fmripower.org/
mean_centering/

Bi now represents BOLD at group average R
BIEER TR A FIRMBOLD

BOLD Contrast

Demeaned R values
2R ELMEFIRE



; “" ' '.

A=t ) Y -
FMRIB'
Design
matrix

/ r1\

Fa2

]

Fa

I's

r
6/

-t ek ek ok ek b

BOLD Contrast

mumford.fmripower.org/

D ecmean i ng mean_centering/

Does
] demeaning
What does the fitted Contrast change the
model look like? stats?
[10]
YES
[0 1] NO

R (your continuous covariate)

Mean centred value=r|- T
where Tis the mean of r| to rg

Adding or subtracting a mean from
EV2 (i.e.ri to r¢) changes [

Demeaning
recommended?

YES

YES



| mumford.fmripower.org/

Demeaning

/ r1\

r2 Bi represents BOLD at R=0

By
]

— ek ok ek ok =k
- = =
o » W

~

BOLD Contrast

0
Original R values



" mumford.fmripower.org/

) Demeaning

B now represents BOLD at group average R

BOLD Contrast

Demeaned R values



‘:i AN
s ANl
4‘-1; U‘l“ | (ﬁr——

A=
FMRIB'
RITHERE
Design
matrix

/ r1\

)

]

Fa

I's

r
6/

-t ek ek ok ek b

MERBIIXE LR E EERTRITER TNE?
What does the fitted Contrast Does demeaning

model look like?

BOLD Contrast

mumford.fmripower.org/

D e m ea n i ng mean_centering/

change the stats? '

[1 0]
YES
— [0 1] NO
R (your continuous covariate)
Mean centred value=r|- T HEEIR
where Tis the mean of r| to rg T s

Adding or subtracting a mean from
] MEVZJI]):ESZ%%B%
EV> (i.e.r| to r¢) changes B SN
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Advanced designs

)




Al Case Study:
FMRIB' . .
Parametric Designs
REIFS: SEORT
Scenario:

Interested in specific responses to multiple levels of a painful
R S B R0 B (R L

Contact Heat-
Evoked Potential
Stimulator
AR R R

Specific questions:

Are there regions showing significant responses to painful stimuli?
BN ERNNE S BRI

Are there regions where higher intensity stimuli produce

larger responses!?
BITERBENH B AR AR B2

Are there regions with a linear response across multiple levels of
stimuli?
SEFEES MIRKT L RS RRORSE?

Solution:

Multiple regressors zzm
Contrasts and F-tests sittiriss



Analy5|s of responses to multiple levels

FMF%I B'

of palnful stimuli: modelllng 2 SEC T CIvR
2

owoane ® POSSIDle approach: model a specific hypothesis
ow painff& . .
% “rest’B 8 - high produces twice the response as low

$high paINER S SRt RO S R A R RO

e Pre-supposes relationship between
stimulation strength and response
RIXRIARES RMAK R

e Can only ask the question about the pre-

supposed relationship
RBEE]— X T FFeRERI X R AY(E) R




%g.'.».AnaIyms of responses to multiple levels

FMF%B'
of painful stimuli: modelling
DI SIKFEBRIERN : 18

high pain | i .
“sk  w= ® DBetter approach: model as if two

completely different stimuli
EFIAE: GRTTETENRIE—FE2E
* Now, no pre-supposition about relationship

between stimulation strength and response
MTE, EREXRTRIFCREMRN 2 BX RFERIR

® (Can assess responses to individual stimuli
BETHE XS MR RIB A S Az

° t-contrast [0 1]:“ response to low pain” wr=

GESRE HMANEEEEEEEEEEEEEEN




FVMRIB'

GESRE HMANEEEEEEEEEEEEEEN

zz.whAnaIyS|s of responses to multiple levels

of painful stimuli: modelling
DTSRRI N : 18

high pain | i .
“sk  w= ® DBetter approach: model as if two

completely different stimuli  smisermmms—rs
Now, no pre-supposition about

relationship between stimulation strength
and response - W& SREXTHNERARLZEXROTLES

Can compare the size of the fits of the
WO regressors mJMERFm N EAR A E K/

® t-contrast [l -1]:"is the response to high pain
greater than that to low pain ?”
X SRR R BAY R N EL 3R E AR R N A IS?

® t-contrast [-] I]:"is the response to low pain
greater than that to high pain ?”
SHEFRRERBIIR ML S 2 ERBIR N AIG?




Al Analysis of responses to multiple levels

FMF%B'
of painful stimuli: modelling
DI SIKFEBRIERN : 18

high pain | i .
“sk  w= ® DBetter approach: model as if two

completely different stimuli  smisermmms—rs
Now, no pre-supposition about

relationship between stimulation strength
and response - W& SREXTHNERARLZEXROTLES

Average response!Ei5z?

® t-contrast [I I]:"is the average

response to pain greater than zero?”
SHEBRTHYIRNEEARTE?

GESRE HMANEEEEEEEEEEEEEEN




- Parametric Variation - Linear
Trends sszt-siies

* |s there a linear trend between the BOLD response and

the painful stimulus intensity?
BOLD{E SHIEIBRIRIZGRE Z 88 4 14250157

A
hard
BOLD ®
signal light ) medium
effect ® edium
size
BOLD .
il | hard
>

Pain stimulus intensity
RRBRRINEEE
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FMRIB

~Parametric Variation - Linear
Trends s#mwgmes

+ linear
- linear

A three-strength experiment =z

Is there a linear trend between the
BOLD response and some task

variable?
BOLDE S/l —LEESTE= Z BB R AL T EE?

t-contrast [-| O |] : Linear trendgsias



A
A |

oo Parametric Variation - Linear
Trends ssz=wsmes

= - * A three-strength experiment =smzss

]

L] .

= e |s there a linear trend between the

8 BOLD response and some task

] i

I varlable? BOLDE S — IR T2 Y B BIFIEE M
. e t-contrast[-1 O |]:Linear trendses

]

] A °

] Y

. BOLD

- ol o

W

=

Cl low

02 m':fh n ﬁ

c3 high Force of hand

4 + linear squeeze

S - linear
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3 Parametric Variation - Linear

Trends szzwsmes

= - * A three-strength experiment =smzss

:

= . e |s there a linear trend between the

8 BOLD response and some task

B .

I varlable? BOLDE S — IR T2 Y B BIFIEE M
. e t-contrast[-1 O |]:Linear trendses

]

] A °

] Y

. BOLD

- el o

W

=

Cl low

02 ﬂlf:dl n ﬁ

c3 high Force of hand

4 + linear

squeeze

S - linear
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FMRIB'

cl
c2
c3
c4
cs

Parametric Variation - Linear
Trends

ST - 525

A three-strength experiment =smsx

Is there a linear trend between the
BOLD response and some task

varlable? BOLDE S — IR T2 Y B BIFIEE M

low
medium
high

+ linear
- linear

>

Force of hand
squeeze

EZNNE

e t-contrast [-] O I]:Linear trendsumes

A °
o
effect

A
o
BOLD
effect
size ®
\ 4
[
ﬁ
Force of hand
squeeze
BENHE
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et Parametric Variation - Linear
Trends ssz=wsmes

= * A three-strength experiment =szgsu
]
B .
= e |s there a linear trend between the
8 BOLD response and some task
0 .
I varlable? BOLD{E S — IS T2 Y MR TIFEE HIEaE?
e t-contrast[-1 O I7:Linear trends=:is=
. w
] A ® A 1
il ® °
] BOLD BOLD
. eﬂ"'ect ° effect
. size size .
& v
[ | @
Cl low
02 ﬂlf: d l U’l ﬁ ﬁ
c3 high Force of hand Force of hand
c4 + linear squeeze saueeze
CS -~ linear

Slope (B3-B|) is the same for both mzsi=zER
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ot~ Parametric Variation - Linear
Trends ssz=wsmes

e A four-strength
experiment mags

e t-contrast [-3 -] | 3]:
Positive linear trend
NAGEsA =k

Cl strength 1
C2 strength 2
C3 strength 3
C4 strength 4
CS5 pos trend

ERRNERRNANEOSSRRNRRRNRREE
¥ ¥ ¥ ¥ ¥ ¥
s s ¥ v s s

S v S v O v S N ¥

Cé neqg trend



A
zﬁi%%WW»~

FVRIB'

strength 1
strength 2
strength 3
strength 4
pos trend
neg trend

w ¥ ¥ ¥ ¥ ¥
¥ ¥ ¥ ¥ ¥ ¥

S v S v O v S N ¥

A four-strength
experiment mzzsx

t-contrast [-3 -1 | 3
Positive linear trend
NAEEsF T =E

Parametric Variation - Linear
Trends

ST - 525

]:

[-3-1 1 3]
‘o [-2-112]
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s~ But what if it isn’t that
P re d | cta b I e 7 AR TRREFN /4 712

Auditory word presentation

at different rates
A AR RS 230

_

=

=

=

= A

I of .

= i * *
= -

-

. g| .
= —_—

o
[y
=
(=5
[y
[y
[y
[y
[y




A

<as But what if it isn’t that
predictable? merwmuzsn

Given this design what would be

“reasonable” questions to ask!?
XM, Bita“BE HEHE[E?

A
9 o
O . .
C
L
100 WeM 200 WP g @ @
Cl Words 1 1 1 1 1 )
c2 5003100 -1 0 1] 1] 1
WPM
More activation to 500 than to 100 WPM? But no
500WPMAY I EE 58 o True story



A

~ee~ But what if it isn’t that
predictable? merwmuzsn

Given this design what would be i 54
“reasonable” questions to ask!?

Activation proportional

to WPM?

BESWPMALEEHI?

“RIE R[] E 8] ?

A
R .
O () ®
g
g ® °
>
WPM
Still no...



A

~od- But what if it isn’t that
. AN R ASBEFTLN B2 I3?
predictable?

Given this design what would be i 54
¢¢ 'Y . 7 “BER o AE(0)?
reasonable” questions to ask?

But seriously ... would
you have asked that
question!?

REL B E B TSENEA T 4

A

Q
v
L
C
o

¢l Words 1 1 1 1 1 >

C2 Neq Sqr -2 1 2 1 2

Inversely proportional to Vaay! WPM
WPM squared? #=swemi Y N



4% But what if it isn’t that
predictable? merwmuzsn

o
100 wpM 200 wPM 300 WPM 400 WPM
Cl Words 1 1 1 1 1
2 1 -2

o
]
=

WP

=

o
0o
=
@
o
177
=
0o
[y

What can we do about that?

HATREE LM

There is a (very real) risk of

missing interesting but

unpredicted responses
KRERABIERAFANESE XKL

A

& .

U . .

-

3

> ® o
L
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i+ F-contrasts to the rescue

3T EE#ATHAK

Y

We can define an F-contrast
that spans “the range of
possible responses”

AIAE X = s Al fe R N ST B YRS EE E

100 weM 200 wPM 300 wPM 400 wPM 500 wP

=

S S o A
9 .
9 . .
-
An F-contrast is a series of A .

questions (t-contrasts) with -

an OR between them
-3t B— RN BMAEPE Z [BHIXTEE (e-3FEE)

True story
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i+ F-contrasts to the rescue

FXSEERET TN

We can define an F-contrast
that spans “the range of
possible responses”

FIAE X —1 5 P RE R R SE BRI FXS EE

100 WeM 200 WPM 300 WPM 400 WPM 500 WP
cl 200>100 -1 1 0 0 0 A

)
Y
o

c

o
>

o=

Let’s start with “Greater
activation to 200 than 100
VWPM VWPM

M“200LE 100 wpmB B KHYEUE " FHia




i+ F-contrasts to the rescue

3T EE#ATHAK

We can define an F-contrast
that spans “the range of
possible responses”

FIAE X —1 5 P RE R R SE BRI FXS EE

L.-fla.ala.-'l

100 WEM 200 WEM 300 WBM 400 WPM 500 WP
1 2005100 -1 1 0 0 0 A
2 3005200 O -1 1 0 0o

OR
300WPM > 200WPM

=

Vernicke
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i+ F-contrasts to the rescue

FXSEE#A TN

We can define an F-contrast
that spans “the range of
possible responses”

FIAE X —1 5 P RE R R SE BRI FXS EE

100 wPM 200 wPM 300 wpM 400 weM 500 wP
cl1 200>100 -1 1 0 0 0 A
c2 300>200 0 -1 1 0 1]

3 4005300 O 0 -1 1 0

OR
400WPM > 300WPM

=

Vernicke




A i1
ATn N
iﬁ:&’fﬁ U

FMRIB'

F-contrasts to the rescue

F3TEE#ATHAK

200100 =1 1 0 0 0
300200 0 -1 1 0 0
4003300 0 0 -1 1 0
5003400 0 0 0 -1 1

OR
500WPM > 400VWPM

EVs Contrasts & F-tests I

Setup contrasts & F-tests for

Contrasts |4 5  F-ests |1 -

Paste | Title

Original EVs  —

Qcl 1~ [200-100

QC2 |~ |300-200

OC3 | |400-300

0C4 |~ |500-400

Vernicke

EV1 EVZ EV3 EV4 EVS

S O O

0 21 21 20 2o 2

0 20 27 27 2o 2

TE OE ORE SRE E
o

F1

E EE e

WPM

True story



Hﬁ%’u || -
FMRIB'

cl 200>100
c2 300>200
c3 400>300
c4 500400

F-contrasts to the rescue

FTEE AT HK

100 weM 200 weM 300 wPM 400 wPM 500 wp

I
oo o L

1

o o

1
o Lo

lwlululwlv -I

1
e oo

Il‘l-l'll"ll"l-‘I JI

=
TEEE-"

= o o o

But ... that doesn’t span all
possible response, what
about for example 300>100?

BR.. XFRBREME NN, tE21300>100?

Vernicke

WPM

True story



i+ F-contrasts to the rescue

3T EE#ATHAK

IJ.J.J.J.J JI

100 WP 200 VPN 300 WPM 400 WPM 500 WEM 1
el 2005100 -1 1 0 0 0 W
C2 300200 O =il 1 0 0 W
C3 4005300 O 0 =il 1 0 W
c4 500400 O 0 0 =il I

300>100 implies
200>100 AND/OR 300>200
which we have covered

300>100 Ek&E200>100F1/35,300>200

Vernicke

But .

.. that doesn’t span all
possible response, what
about for example 300>100?

BE.. XHREREME R 8ENNMA, tE20300>1007?

>
WPM

True story
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i+ F-contrasts to the rescue

FTEE AT HK

=

100 weM 200 wpM 300 wPM 400 wpM 500 wP
cl1 200>100 -1 1 0 0 o

This t-contrast asks
“where is 200>100?”

XTI EERRAIZE 200> 100“AIE R
F-contrasts are

bi-directional
FXSEE XN @R

But ... what about for

example 100>200, you
haven’t covered that!

B21%100>200, LERFPRENTA?

>

Vernicke

WPM

True story
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i+ F-contrasts to the rescue

FXSEERET TN

Ii'.illf.i.i l'I

=

EENERNNENNESSERNNENNENND
JIIIII¥I||||¥IIIIIHIIIIIUIIIIIUlllll
Il'll'.l'.l'l!'l!'l
|IIU|||||U|IIIIVIIIII5IIIII¥ iII

100 WeM 200 WM 300 WBM 400 WPM 500 WP
el 2005100 -1 1 0 0 0 °

But this F-contrast asks
“where is 200+ 100?”

X TG RTA92200+ 100094 R
F-contrasts are

bi-directional
FXSEE XN @R

But ... what about for
example 100>200, you
haven’t covered that?

{B215100>200, LERFFRET A?

>

Vernicke
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FMAIB. Case Study:
Factorial Designsjy

and Interactions
ZHHR: RFITFBEEER

Scenario:
Investigating in multi-sensory regions s smssmxms
Specific questions:

What regions show responses to vision, touch
IPLE XIS ATE . ARDEH SR M

What regions respond significantly to both?
IARLE Fj X X & #0R B & RN ?

Are responses additive where there is both visual and touch

stimulation, or is there an interaction!?
EBEUEMNARRIMAERL T, RMNEMNYN, *2EXEERA?

Solution:
Specific regressors mzwmmamz
Contrast masking westem



a 1
HwIA" \
Kl [\ A

EM

=m Y |'v"""'

RIB'

Multisensory study .

EV | models vision on/off e =z
EV2 models touch on/off cvaszums

Can generate simple contrasts for:
PILAGUEE B BRI L

vision activation/deactivation [ | 0]
o ST

touch activation/deactivation [ 0 | ]
R B A/ HD

differences in responses [ | -1 ]

RNZES
Regions showing both visual and tactile
response??

BRALSEAIARSE & R A XA? ?
Not [ | | ]:this only assesses the average

AR 1]: RRZBIHEFIE

[=
YART3S

4 41 4 1 | |

[

Cl wision
c2 touch

Ik
H
i
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Al iy o
FMRIB'

Contrast Masking
XJEEFMR

Often it is of interest to identify regions showing significant
effects in multiple contrasts (e.g. responds to visual AND

tactile stimulations)
BE, AMIBRAXBNEREESENLEHRERESRROXE (FI20, SRR TTRIEE R MN)

This can be achieved by masking a thresholded z image for a
chosen contrast using the thresholded z image from one or

more other contrasts.
XelBUB{ER B — 1 S P E M3t E R B zE % S ik Pt XS tb B RSB zE (% e 323,

Misc | Data| Pre-stats| Stats Poststats | Registration

Pre-threshold masking )
Thresholding
Cluster — \ Zthresholdfé.?fCiusterP!hreshold(O.E?

Use actual Z minfmax | Transparent blobs |

I Create time series plots

Go \ Save | Load | Exit | Help \ Utils:




]

WA

x| Contrast Masking
XJEEFMR

e Often itis of interest to identify regions showing significant
effects in multiple contrasts (e.g. responds to visual AND
tactile stimulations) BE, MIBBORRELS BN RTREMROKE (BIR1, XMEHASIRIHE R
* This can be achieved by masking a thresholded z image for a
chosen contrast using the thresholded z image from one or
more other coNtrasts. imbims emses — s 2 b s B EE SRR 40 AR ER T

For example, say we had two t

Mask rel Conast 1 wit: [ contrasts Cl| (I 0) and C2 (0 |).We
Mask real Contrast 2 with: od | | . R
el rs Camasta vt may be interested in only those
voxels which are significantly "active"
Mask using (Z=0) instead of {Z stats pass thresholding) fo r bOth cO nt rasts
oK |

Fan, BRIEEMEm DT (10) Flc2 (01)
A TR BE RIS BRLE I FRF ST LEE B B E BUBHI AR BN E,



oA

FMRIB'

Contrast Masking

X EE AR

* Rather than masking with voxels which survive thresholding, it
may be desirable to mask using positive z statistic voxels

mstead S5EERARERNEENGRE, FTERZRKEFRREZNAE,

Mask real Contrast 1 with:

Mask real Contrast 2 with:

Mask real Contrast 3 with:

™ Mask using (Z=0) instead of (Z stats pass thresholding)

For example, say that we have two t
contrasts C3 (I -1) and CI (I 0). 1t
may be desirable to see those voxels
for which EV1 is bigger than EV2,

only when EV | is positive

Fan, BIgEEMNER N ITEES (1,-1) Fcl (1,0)
REHEVINIER, FHLEFIEVIKTFEV2REE,



FMRIB'

Factorial design _.

No .
Vision Vision
No
Touch
Touch

%3

Allows you to
characterise
interactions between

component processes
AV EHEARRD T2 HRE
i.e. effect that one

component has on another
—TR 2% B—FR S R
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-~ No Interaction Effect

REREEA

No

o Vision
Vision

No
Touch

Touch




-+ No Interaction Effect

REREEA

No

o Vision
Vision

No
Touch

Touch




A

A I
™
é@*\’fﬂ U

-~ No |Interaction Effect

No .
Vision Vision
No
Touch
Touch

XBREEH
Vision Touch Vision+Touch

No interaction -
effects add linearly



A

-+ Positive Interaction
Effect FrEEER

No

o Vision
Vision

No
Touch

Touch




A I’I| 1
R -

Positive Interaction
Effect FEXE{ER

FMRIB'
No .
Vision Vision
No
Touch
Touch

Vision Touch Vision+Touch

Positive interaction -
“superadditive”



A

-~~~ Negative Interaction
Effect RSB e

No

o Vision
Vision

No
Touch

Touch




A

-~ Negative Interaction
Effect amxarm

No .
Vision Vision
No
Touch
Touch

Vision Touch Vision+Touch

Negative interaction

- “subadditive”
AR EER-RINE”
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-~ Modelling Interactions
Between EVS SYEVIEHSE B fE A RS

= General Linear Modef « 10

No EV1| EV2 | EV3 |

Visi Vision
ision Basic shape: Interaction ~|
No Between EVs 1/ 2
Touch
Touch

e EVI models vision on/off
e EV2 models touch on/off

EVI R R
EV2 RRATER

1 fr +r - 19 1 1 |
p— —= L= e —= L= p—

)
.
.
-

Lo e
S
oW
0O M-
=]
5
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Modelling Interactions
Between EVS SYEVIEHSE B fE A RS

= General Linear Modef

FMRIB'
No .
Vision Vision
No
Touch
Touch

EV1| EV2 | EV3 |

Basic shape: Interaction —‘I

BetweenEVs 11 21

e EVI| models vision on/o
e EV2 models touch on/o
e EV3 Models interaction

EVI RRA5E
EV2 RRAL5E
EV3I KRR EEA

Cl wision
C2 touch

C3 Pos interactio
C4 Neg interactio

-- LR LR LD
I'-'TI'-' e =1 ===

- N B =
-
| - -
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Correlation of EVs
EVEYE X



WA

_ Al Correlation of EVs
A:OEES

* Correlated EVs are relatively common, but strong
correlation is a problem in either first-level or group-
level designs.

HREVAESTRIREERE L, (EEMAKFERAKFIZITHR, BEXE— T,

* When EVs are correlated, it is the unique contribution
from each EV that determines the model’s fit to the data and
the statistics.

HEVsETEXRE, EM—RITIEMERE 7 RS EURENST,

* Start by looking at first-level examples: BHREMIKT
* correlation and rank deficiency R Sk
* design efficiency tool gitHoARlE



/ié\._ |||' '
»F—J*‘}Y\'»’I 1 || -
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Correlation of EVs:

First-level designs
EVsRITE K: MK

[ ) N 1
1 | ) . 1| [
([ N N
) ) . ) -
(R N )
) | - 1| e
i el - )
e -
] ) . 1.-




o Design Matrix Rank Deficiency
IXTTAERERYFR

* A design matrix is rank deficient when a linear combination
of EVs is exactly zero
* Model can fit exactly the same signal in multiple ways!

* e.g.visual and tactile stimulation occurs at very similar times,
so it is not possible to separate the responses!

HevstI&E M ASHER, RITEFERTHY
REgENZMAUEHRtiaE—(E5!
fBlan, MR TR EEIFERIURIET |8
LRI BE D B S oz !
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HwIA'

o Design Matrix Rank Deficiency

IXITTAEPEHIRK

* A design matrix is rank deficient when a linear combination

of EVs is exactly zero

* Model can fit exactly the same signal in multiple ways!
e e.g.visual and tactile stimulations are exactly opposed

(so no baseline)

: |

HevsHIEMHAHSRNERN, IRITHEEEMRTHY
REgENSMAURERINEE—ES
plan, MENMRERHTERR (RLRBEEL)



H;g:.'erDemgn Matrix Rank Deficiency

* A design matrix is rank deficient when a linear combination
of EVs is exactly zero
* Model can fit exactly the same signal in multiple ways!

e e.g. modelling visual, tactile, and rest (the last one is
effectively baseline and shouldn’t be modelled in FSL)

-]
}

XSRDE . fl
IS ES
HEERE (&
BF—1 R~
WEIE 2%,
AN TEFSL
FREELE)

,.
-
.—' -—'




- Close to Rank Deficient

Design Matrices
Ak S RO TT AR

 Good News: The statistics always take care of being close
to rank deficient

FHR: RIS R RIS



|

'

- Close to Rank Deficient

Design Matrices
RITAR S RNIRITAERE

 Good News: The statistics always take care of being close
to rank deficient
IFHR: RIS RRIEERSHY
 Bad News: the ignorant experimenter may have found no
significant effect, because:  #ys: FrIrETEIELNBINNE, EX
a) Effect size was too small. a) ®m&Ex).

b) Being close to rank deficient meant finding an effect would
have required a HUGE effect size

e.g. may need a lot of data to determine how two EVs with
very similar timings best combine to explain the data.

b) FIAKSEREZERR—TRNFZEANMNE, FI3, AJEFEEASHIERBEM
T ESEIAEE LR EVs AE R IF S SRR AR,
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~~=¥Vhen do we have a problem?
F1ERI[a) 3R

-- * Depends on SNR, and crucially the
contrasts we are interested in:
BURTEERLE, RERIAVEAEBXILEE
e [I -1] e.g. vis-tact??
[1,-1] B0 oe -t oE

e [I |I] e.g.average response??
[1, 116180, FY/RN

* [1 0] or [0 I]?2? e.g.visual! or tactile?
[1,0] Bk [0, 17 AN 5 E 2R

1
L
-
-
-



_4When do we have a problem!?
FER o] 0

-- * Depends on SNR, and crucially the
contrasts we are interested in:
BURTEMREE, REBEBAVREABRINEEE:

e [I -1] e.g. vis-tact??

- no chance: [I.-1] BN 5-AR3E
e [I |I] e.g.average response??

- no problems:  [I. 116130, ¥R
* [1 0] or [0 I]?2? e.g.visual! or tactile?

- no chance:

[1,0] % [0, I] AN i =2 i B

PNaLe

pedlapl

NPIEE

1
L
-
-
-
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onISANE

=" Design Efficiency
IR BRI
Desired P-Value =zw=

witer Design Matrix, X

xitt Contrast, ¢ —

Design
Efficiency

IRITHARE

rzkE Noise level =

wEERX Temporal autocorrelation

Required percent change

BENELLA
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Design Efficiency

IRTTRIB L

N Mode

Correlation .
, Eigenvalues
matrix

l \ Design efficiency l

N\ FEAT - FMRI Expert Analysis Tool - v5.64

First-level anddysis —  Full analysis ]

Msc | pata | Prestats | Stats | Poststats | Registration |
~ Bafloon help

~ Featwatcher

Delay before starting (hours) 0 ~

Braindackground threshold, % 10 2

Design effickency

Noise devel % 066 2 Temporal smoothness 032 2
Effec ared (%)
Estimate from data o ‘;’t tequired (%
c2 1.575
€3 1.706
Go | : Load Exit | Help Utes \

cl 1 0 0 0

>y o U ! % change required for each

@t 1" . contrast to pass specified z-
Settings for design efficiency threshold
calculations These are the /
IRITREITHINRE most useful! ST E AT B EE X

XEREHN



_4When do we have a problem!?
T AW &= L3 [a) 22E?

* Depends on SNR, and crucially the

contrasts we are interested in:
BURTSIREE, REERANRBAERIILEE

° [ | -1 ] e.g. vis-tact?? Effect size required
- no chance: 5.3%
[1,-1] B0 be-Ad o 2NN BN EFES.3%
e [I I] e.g.average response!?
- no problems: 0.84%
[1, 1] 5040, FHxRM /%2 0] W = FEE0.84%
e [I 0]or[0I]? e.g. visual? or tactile?
- no chance: 5.3%
[1,0] B% [0, I BI%0#R ot 1A 2 ko FIgE W B ES.3%
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=il Case Study:
Correlated EVs
ZEIRRST: EVsHIiER

Scenario:
Investigating whether there is a relationship between a patient’s
disease/behavioural scores and their BOLD responses
BAEBRBFNWERRBATHITED SHBOLDES ZEIREFEXR
Problem:
Different scores are likely to be strongly correlated.
Which regions’ responses correlate with disease scores but not
age! Ry MATaARIBHIIERIL.
PARLE X el R e N 5 YRR I D TH X T S5 F R oK ?
Solutions:
Combination of F-tests and t-tests

BB SRS



_s2i-Correlations, Covariates & Corrections
M S BRRE

® Consider a case example:
HEAPlF:
» Disease Duration (DD) + age (demeaned)
TRRIFERT A (DD) +&#R  (FilvE)

» where we want to ‘correct’ for age
BeA 1R “HFIE e



_“24-Correlations, Covariates & Corrections
M. DEEARE

® Consider a case example: . xmsz:
® Disease Duration (DD) + age (demeaned) smmasia ©o) +aw
» where we want to ‘correct’ for age #imswE =

» If there is correlation between DD and age then it becomes
triCk)’ SNRODMFR Z EIFEEXMY, BAMBERFT

» One option is orthogonalisation of DD and age ...

— AR S DD FRAVIERE. ..



-uoikA better alternative to orthogonalisation
FXf BT IE

® Consider a case example: . a7
» Disease Duration (DD) + age (demeaned) #msamia (o) s

» where we want to ‘correct’ for age #imswE =



"‘ J [

-vas A better alternative to orthogonalisation

® Consider a case example: . zvmz:
» Disease Duration (DD) + age (demeaned) i (o)

» where we want to ‘correct’ for age syswr=n

t-test A t-test for a single EV is determined
only by variability in BOLD signal that

cannot be accounted for by other EVs.
EEVsEYRIN{X FHBOLDRYRT SR HAE, HAMEVsTTAR

BXMAI L,

This is a conservative result: only
when DD can uniquely explain the
measurements will there be a

significant result.

XE—TRINGR: RESDDEEBMH RN ESS
i Z‘%ﬁi%ﬁ’ﬂéﬁ%o




H;;.B"»A better alternative to orthogonalisation
® Consider a case example: - =mz:
» Disease Duration (DD) + age (demeaned) =msama o) v

» where we want to ‘correct’ for age #nivewEF#®

t-test F-test
—- ]
E [0 1 O] [
_él.‘ ]

mean DD age mean DD age



FM;B.A better alternative to orthogonalisation

® Consider a case example: - ztm7:
» Disease Duration (DD) + age (demeaned) i (o) +

» where we want to ‘correct’ for age #nivewEF#®

F-test

An F-test finds regions where
signal can be explained by any
combination of EVs.

FA&36 & TS S 7] A EVsRI(E o] B & SRARFE AT
X1,

[

Will show significant results
where either DD or age or both
can explain the measurements.

mean DD age

BEREEENGR, HPDDFIREMEE AL
BRNESR,
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-wms A better alternative to orthogonalisation
t-test F-test

[

I[O 0]

==

mean mean DD age

R (RBRIEA AN Y
Results (a fairly typical example with strong correlation): mwm L dRRARE, AN

Not significant (t-test) Slgnlﬁcant (F-test)

Interpretation: Significant correlation with both DD and age, but cannot separate the
effects as they are too highly correlated and the response to unique portions (if

any) are too weak. BRE2: SDDIIERGESZMEXY, ETESBNE, ENTITEAMAS, RSN REHIE) NRAS.

Follow on: one way to (potentially) separate the effects would be to recruit new

subjects such that DD and age were less correlated (need more data to go beyond

the above interpretation). ;ﬁ #f??lﬁ SERRI S E2BENOZIRE, XHEDDNERNEE ) (BES SRS
R
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Appendix
3

Case Studies:
e HRF Variability ww=se
* Perfusion FMR| ==

e Orthogonalisation & more on demeaning

1ER & ML



FMI;Ié C aSe Stu dy

Scenario: |z Z 5l FHR

Patient vs Control study  #avsaus
Patients on a drug treatment smwsrwsA
FMRI cognitive task MR ASDEES

Problem: (3
Drugs affect cerebral vascularity swsmmne
Haemodynamic Response Function (HRF) is altered rrrzszus
Want to separate changes in HRF & neuronal activity
- otherwise poor HRF model leads to bias in activation
strength and increased residual noise

180 BHRFAMZTTENINENL
B0, RENHRFREZSECHIERERREN AR RGN,

Solution: m#rsz
Basis functions to model HRF variability

B HRFE SRR E R 2]
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o~ Dealing with Variations in

Haemodynamics
SRR N A

* The haemodynamic responses vary between subjects and areas of
the brain . witeRAmREREHMm FEHH %R
* How do we allow haemodynamics to be flexible but remain

plausible? Samplesofthe HRF  * BT HFTERE, BRHREIE?
1 T T T T

o5 Hi

-0.5
0

5 10 15 20 25 30
seconds

Reminder: the haemodynamic response function (HRF) describes the BOLD
response to a short burst of neural activity iem: wreme 7 smmmzEmIEOLDR .



et Using Parameterised HRFs

{EFRZ L AIHRFs

* We need to allow flexibility in the shape of the fitted HRF
RUERBMHRFIZA LR

|deally, parameterise HRF shape and 0 oo opinemn, semmmonssmna
fit shape parameters to the data

' ' fl; |
M S ———— .
] ]
|

Needs nonlinear fitting - HARD
BEIA NS -ERE
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S Using Basis Sets

EREIIRE

* We need to allow flexibility in the shape of the fitted HRF
RATEBSHHRFEAR LR

|deally, parameterise HRF shape and Or, we can use linear basis sets to

fit shape parameters to the data span the space of expected HRF shapes
AR T, SHAHRFICR, HEFRSHEHIENS WE, BRI MERL M EE RIS HFIEAHRFAZIARIZ 8],
' ' LT ' o Basis Purctlior

‘_ +— — —pr -
I

Needs nonlinear fitting - HARD Linear fitting (use GLM) - EASY
HUME (fEFgGLM) -t



Temporal Derivatives wins:

FMRIB'
* Can model some HRF variability using the temporal derivative , . _.

e The temporal derivative of an EV allows for a small shift in time of

- , S A P eV . (o S
that EV (it is a small basis set) gﬁﬂiggﬂgﬂj'ME’J‘“ f (BER—TINES)

* Based upon |st-order Taylor series expansion:
f(t+a) = f(t) + a.f'(t)

™\

Shifted EV v Temporal derivative

Temporal E
EV derivative

model fit
without
derivative

model fit with
derivative




-+ How do HRF Basis Sets Work?

HRFIVEARNIZ B I TIERY?

Temporal derivative is a simple example of a basis function

- need more basis functions to allow for shape changes
B SHEESRBN— TR R F-FEESHNERRHERIR

Different linear combinations of several basis functions
can be used to create different HRF shapes

ST ERRHNRELEMEES A BT EIEZEANBRIHRFZIA

basis fn | basis fn 2 basis fn 3 HRF
I .0>l< ."'/"\I"-. N \ ',"'(-\".|.

+03 N |/ +.0.0% =



|
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=" How do HRF Basis Sets Work?

T . HRFEI’\JEZIK?& = W TIERY?
Temporal derivative is a simple example of a basis function

- need more basis functions to allow for shape changes

B SR EARHN— N ERE F-FEESNERR AT

Different linear combinations of several basis functions
can be used to create different HRF shapes

ST EFRYBRE LIRS BT LIERRAIHRFAZIA

basis fn | basis fn 2 basis fn 3 :HRF
Y
."'/\\ /\ \ / \ /,_ = ,"" \X\
ox [\ w03 V| Taoax = |
L W L/ o / \__-
A N N
0.7% | +-02% /| e vos T\ /=
/ \-_____ \/ | N

But how do we choose the basis functions?

BEBATAEE R E R LR ?
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=" FMRIB’s Linear Optimal Basis
Set (FLOBS) FMRIBRYZ M REEE

Using FLOBS we can: —— CIEX

{EFIFLOBSTRATRI LA
* Specify a priori expectations of

parameterised HRF shapes
EE S HRFAZRAY I EA R E

* Generate an appropriate basis set

(from a large set of samples)
EREHNESE (MKERERE)

MR Sasples

mi Moo 2 maf 2
m2 Mn[a_g O
m3 Mm[a—-:- M.uf_g
e Mn’3_§ Max‘é_:;:
C Mnlo—i Max[?i

Number of basis tlnctmsfj—il

Output directory I ﬁ

Prevew | Go | Extt | Help I
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~=e" FMRIB’s Linear Optimal Basis
Set (FLOBS)

Select the main modes of variation as the optimal
basis set “ERIBTHEXENBRMES

“Canonical HRF” “#mHRe”

suoy diSpPersion

derivative temporal

derivative

A 8] S 24
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& HRF Basis Functions in FEAT
FEATHAJHRFEZARINRE

The FEAT GUI allows a range of different basis functions to choose from

FEAT RERIFM—RIIAREREARINGEFHF TR
Stimulus/Neural
Activity  #i8uE5ERD

EVs | Contrasts & F-tests |
Mumber of original Evs | =
1]
EV name |
Basic shape:  Square -~ |

Skip (s) 0o 3
Rl

On {s) 1

Phase (s) |43 -
= convolved

Stop after (s) |-1 3 with

Convolution:  Optimalfcustom basis functions ~« I )
Phase (s) 0o 3

Filename |m3r!local:‘fsl.fetcfdefault_ﬂobs.ﬂobs.rhrﬂc _gl

{create a custom optimal basis set with Utils-> Make_flobs)

Orthogonalise basis functions wrt each other |~

™ Apply temporal filtering

View design Efficiency | Done |




44 HRF Basis Functions in FEAT

FMRIB'

FEATHAIHRFE A IHRE

The FEAT GUI allows a range of different basis functions to choose from
FEAT SR VP — RFIR BRI B AT RErR T I4%

EVs | Contrasts & F-tests |
Mumber of original Evs |1 -
1]
EV hame |
Basic shape:  Square -~ |

Skip (3) 0o 3
Off (3) 49 3
On (3) I
Phase(s) |43 3
Stop after (s) |-1 3

Convolution:  Optimalfcustom basis functions ~« |

Phase () 0o 3
Filename IAJsr!Iocal.ffsl.fetcfdefault_ﬂobs Afobshrfk _fj]

(create a custom optimal basis set with Utils-> Make_flobs)

Orthogonalise basis functions wrt each other |~

I~ Apply temporal filtering

View desigh Efficiency | Done |

Stimulus/Neural Basis function  EA1p8E
RSB ARL2E D] stimulus responses RR

Activity
HRFEZAINEE
HRF Basis functions
convolved
) with )
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FMRIB

“+  HRF Basis Functions in FEAT

FEATHAIHRFE A IHRE

The FEAT GUI allows a range of different basis functions to choose from
FEAT SR VP — RFIR BRI B AT RErR T I4%

EVs | Contrasts & F-tests |
Mumber of original Evs |1 -
0]

EV hame |
Basic shape:  Scuare —l

Skip (s) 0o 3
Off (3) 49 3
On (3) I
Phase(s) |43 3
Stop after (s) |-1 3

Convolution:  Optimalfcustom basis functions ~« |

Phase () 0o 3

Filename Imsr!locah‘fsl.fetcfdefault_ﬂobs.ﬂobsihrﬂc _*é]

(create a custom optimal basis set with Utils-> Make_flobs)

Orthogonalise basis functions wrt each other |~

I~ Apply temporal filtering

subsample to
convolved FM R,I
with resolution
frigg FEER

View design Efficiency | Done ||

EAKIHEEEVs
Basis function EVs

Stimulus/Neural
Activity R/ EDN

HRFEZAINEE
HRF Basis functions

SR RN

.
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EFVRIB'

How do we Test for Significance!
MTEREEN

Recall that F-tests allow us to test if there is significant
amounts of power explained by linear combinations of
contrasts

EE—T, FRRATFRIININESEFEBRARI LRSS
HEFMERNESR

—-
I}
)
1
il
T
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FMRIB'

How do we Test for Significance!
MAEREEN

Recall that F-tests allow us to test if there is significant
amounts of power explained by linear combinations of
contrasts

E8—T, FREATRIMERESFERANEN NG EHSHRERNER

f-contrast | O O
contras 01 O
0 I

matrix:
0

But note: the F-test cannot distinguish between a

positive or negative activation
BRIE: FOIAEEX 7 RMECETRMECE

—-
1
e
)
1
ot
T




40 HRF Basis Functions in FEAT

FMRIB'
Feat FYETLHRFPR X

In FEAT the GUI allows contrasts to be setup on “Original EVs” or “Real EVs”
FEATH 7 1F7E “[RiRevs "B “HLevs” LIREXLLE

EVs | Contrasts & F-tests |

“Ol’igina| EVS” represent Setup contrasts & F-tests for Original EVs —
the Underl)’ing Contrasts Eﬂ F-tests |0 =

experimental conditions Tide  EV1
OC1 |~ |evi 1 |-

“[RIQEVs" AR T BARRISLIO R




A

44 HRF Basis Functions in FEAT

FVRIB!

Feat FYETLHRFPR X

In FEAT the GUI allows contrasts to be setup on “Original EVs” or “Real EVs”
FEATH 7 1F7E “[RiRevs "B “HLevs” LIREXLLE

“Original EVs” represent
the underlying
experimental conditions

“[RIGEVS"IUR T BARRISLIO S M4

“Real EVs” represent the
actual basis function EVs in
the design matrix

BSCRIEVs R HANRIT R R Ay E
AR EEVs

EVs | Contrasts & F-tests |

Setup contrasts & F-tests for Original EVs —

Contrasts ;’ F-tests |0 —

Title  EV1
0C1 [ |ev -

EVs [ Contrasts & F-tests ]

Setup contrasts & F-tests for Real EVs — I
Contrasts ;’ F-tests |1 —

Title  EV1 F1
€1 fevi(n) 1 &jo #Hjo &
€2 levi(a Jo &1 4o &
€3 fevi(® Jo o &H[t & T

l

—-
1
e
1
e
1
il

c1 (1) 1 0
c2  (2) 0 1
c3  (3) 0 0
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- How do we Test for Significant

Differences (at first level)?
MTMEEERES (MEKTF) 2

Basis fn EVs for  Basis fn EVs for
S : dition | dition 2

We want to test for a significant difference 0N Loneren

between two underlying experimental

conditions (e.g. two coghnitive tasks)

INAIESS)

BAVENAA PN ERTRFZMGZENEZER (HI0MmD |

—
'
'
.
gl
e

L | 1
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20+ How do we Test for Significant

FMRIB'
Differences (at first level)?
MTMEEERES (MEKTF) 2

Ba;sis fn EVs for Basis fn EVs for
condition | condition 2

We want to test for a significant difference
between two underlying experimental

conditions (e.g. two coghnitive tasks)
HVENRA D EALRS M ZANSEES (BINHDADES)

Evs Contrasts & F-tests |

Setup contrasts & F-tests for Original EVs  ~ |
Contrasts |3 S F-tests IO —
Paste I Title EV

oct r | | |1
ocz | |condition2
OC3 | |condi-cond2

o
RIS
RIS

—
)
—

HESISSISSIs.

= m
5
4 41 | |
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iﬁﬁ\’ﬁl v‘J |-

FVRIB'

We want to test for a significant difference
between two underlying experimental

conditions (e.g. two coghnitive tasks)
HVENRA D EALRS M ZANSEES (BINHDADES)

Differences (at first level)?

e EEMEESR (TMRKE) ?

Evs Contrasts & F-tests |

Setup contrasts & F-tests for

Contrasts |3 —

Paste I

oct
ocz
0c3

Original EVs  — |

F-tests |o —

Title EVl  EV2
0 s i (] CHE
" jeondition2 |0 S|t 3
I~ jeondi-cond2|1  F|-1 3

condition 1
condition 1
condition 1
condition 2
condition 2
condition 2
condl-cond?2
condl-cond?2
condl-cond?2

(1)
(2)
(3)
(1)
(2)
(3)
(1)
(2)
(3)

Ba;sis fn EVs for
condition |

How do we Test for Significant

Basis fn EVs for
condition 2

R -.-'-'-'lﬁ

0
1
0
0
0
0
0
1
0

—> —

“‘l‘ll “I‘l‘l
““lll ““lll
““lll ““‘ll
IIIIII

0 0

0 0

1 0

0 i

0 0

0 0

0 =il

0 0

1 0

0
0
0
0
1
0
0

1
[y

-o-ooo- B R

o

FFF
123

mOoO
mOO
mOO
Oomo
OomO
OomO
oom
oom
oor
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- How do we Test for Significant

Differences (at first level)?
MTMEEERES (MEKTF) 2

Basis fn EVs for  Basis fn EVs for

o . . d . I d . 2

We want to test for a significant difference &&Tten ) Lenaon
between two underlying experimental

conditions (e.g. two coghnitive tasks)
HVENRA D EALRS M ZANSEES (BINHDADES)

Evs Contrasts & F-tests I
Setup contrasts & F-tests for Original EVs  ~ I
Contrasts |3 S Fests IO —

Paste | Tte BV EW2
oct Eendition 1 I EIE] CIIE
ocz2 jcondition2 10 ST 3
0C3 |~ |condl-cond2|t %i|-1 %

r
F

ISRISSISRIS.

Cl condition 1 (1)
€2 condition 1 (2)
£3 condition 1 (3)

4 condition 2 (1)
C5 condition 2 (2)
C6 condition 2 (3)
C7 condl-cond2 (1)
C8 condl-cond2 (2)
€9 condl-cond2 (3)

o O Ho o o
o o = O O O

I
[y

Looroolooo

o o OO0 oo o -
[ e e e e | e Y
= o o O o o= oo
oooodfdemmEm —"~

o o
o
[y

MEEOODOOOO0 "



24 How do we Test for Significant

FMRIB'
Differences (at first level)?
MTMEEERES (MEKTF) 2

Basis fn EVs for  Basis fn EVs for

o . . d . I d . 2

We want to test for a significant difference &&Tten ) Lenaon
between two underlying experimental

conditions (e.g. two coghnitive tasks)
HVENRA D EALRS M ZANSEES (BINHDADES)

Evs Contrasts & F-tests I
Setup contrasts & F-tests for Original EVs  ~ I
Contrasts |3 S Fests IO —

Faste I Title BVl EV2

LESISSISSI=

oclt | 1 2o 2
OC2 | |condiion2 |0 S|t 3
OC3 | |condi-cond2|1 w|-1 w
FIF
112
€l condition 1 (1) 1 0 0 0 0 0 O
€2 condition 1 (2) 0 1 0 0 0 0 O
£3 condition 1 (3} 0 0 1 0 0 0 O
t4 condition 2 (1) 0 0 0 1 0 0 am
C5 condition 2 (2) 0 0 0 0 1 0 am
C6 condition 2 (3) 0 0 0 0 0 1 am
CY condl-condzZ (1) 1 1] 1] -1 1] 1] a0
C8 condl-cond2 (2) 0 1 0 0 -1 0 a0
€9 condl-cond2 (3) 0 0 1 0 0 -1 a0 :
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- How do we Test for Significant

Differences (at first level)?
MTMEEERES (MEKTF) 2

Basis fn EVs for  Basis fn EVs for

o . . d . I d . 2

We want to test for a significant difference condron conciton
between two underlying experimental

conditions (e.g. two coghnitive tasks)
HVENRA D EALRS M ZANSEES (BINHDADES)

Evs Contrasts & F-tests I
Setup contrasts & F-tests for Original EVs  ~ I

v
4

,7I

Contrasts |3 S F-tests IO —
Faste | Title BVl EV2
1

oct |

OC2__ |~ condiion2 |0
(01:3 I~ |cond1-cond2

—

AL LIRS
Gl LI

- HISSISSISSIS.

ITEROOO000O «™

o 1 condition 1 (1)
e F-test combines [| -1] t-contrasts for 2 contition 1

£3 condition 1 (3)

corresponding basis fn EVs 4 condition 2 (1)

C5 condition 2 (2)

e this will find significance if there are 66 _condition 2 (3

C7 condl-cond2 (1)

size or shape differences 68 condl-cond2 (2)

€9 condl-cond2 (3)

FIRIRE ST - 11X EEEE BRI ERL R EEYs, IRFEXNTRER, cRNEEM

<
' l
' | l
. l_..'
. .

1 0

0 0

0 1

0 0

0 0

0 0

1 0

0 0

0 1

Riah A _...

I |

[ e e O e Y e Y e

[
\ © S~ ==

oooooo




_ A How do we Test for Significant Differences
Al
(at higher levels)! m@MLEErER (BHKAFE) 2

* Using basis fns and F-tests is problematic when it comes to
doing inference on groups of subjects
AN —ABODHETHIEN, [EREMRBIMFLILZER ).
e This is because we are typically interested in only size (not

shape) at the group level

XRENBATES RXOAATHAN (TRERR) Controls
Between group

differences in
Patients size and shape.
. AR ESR
Siz€ At the group
level look at
size differences.

V ”~
/ AT LERNER.




40 How do we Test for Significant

FMRIB'
Differences (at higher levels)?
A EEEER (BSKFE) ?
e Using basis fns and F-tests is problematic when it comes to

doing inference on groups of subjects ww—ammnammen, wrEmzsRAmBRERSN.
* This is because we are typically interested in only size (not
shape) at the group level sempmmEzRROE TIN @R

e Options:

|) Only use the “canonical HRF” EV PE in the group inference
- e.g. when EVs with temporal derivatives, only use the main

EV’s PE in the group inference

(XEBKF D P {ERIR/EHRF EV
-5gn, HEVsEBRSEISERS, (VERABDHTHEENEY



4 How do we Test for Significant

FMRIB'
Differences (at higher levels)?
TN EZEEER (BESKF) ?

e Using basis fns and F-tests is problematic when it comes S t0
doing inference on groups of subjects ww—ammnammen, wrEmzsRAmBRERSN.

* This is because we are typically interested in only size (not
shape) at the group level semExznERR=O@KTOAN @ERRER

e Options:

|) Only use the “canonical HRF” EV PE in the group inference

- e.g. when EVs with temporal derivatives, only use the main

’ . . NFEHKF DM p{ERREHRF EV
EV’s PE in the group inference B8, HEVSEANESHE, (UERAS I hEEAEY

2) Calculate a “size” statistic from the basis function EVs PEs
and use in the group inference
- must use randomise for this, not standard FEAT/FLAME

IRIERE AR ENEVs pesitE— VN E"HRITE, FHFBETFEDR
-NT{E R randomise TE, TMAZ4n/EFEAT/FLAME
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B Case Study =sms

Scenario: #=
Pain study of tonic, ongoing pain and involving infusion ot
drugs during scanning
(or any other slow-acting physiological stimuli e.g. thirst)
KIS EFFEMARRIRRME, SEEEAENAYREE (SUEUEMISKREERRR, WwOis)
Problem: im
Very slow changes in BOLD activity (> several minutes)
- slow drifts in noise cannot be separated from
neuronally-induced BOLD activity by normal temporal
filtering
BOLDESZEMNRIE (>/Lo )
-IRFE FRAY ISR AN EE R IE R RIS BRI M E TR SHBOLDESH O B sk
Solution: msms
Alternative to BOLD = Arterial Spin Labelling (ASL)

ASLBR X
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Rs Perfusion FMRI using
Arterial Spin Labelling (ASL)

{F FHASLAYEFfMRI

* Alternative to BOLD sowwzke

* Noisier than BOLD for high frequency designswssmisit, treoomzsx

* Potentially less noisy than BOLD for low frequency designs
o ~ S FAESRRIT, e eTAELLBOLDAE

* More quantitative ==t

* Only a few slices rantsic
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R Perfusion FMRI using
Arterial Spln Labelling (ASL)

Control

Image region |

Tag region

* Blood is tagged in the arteries (e.g. in the neck) using an RF pulse

* After a delay to allow tagged blood to flow into the imaging region, the
image is read out

* A control image is also collected without the tag. The subtraction of
the two images gives a perfusion-weighted image

o {ERSIIMBKRERIRK (ANFER) FRicmk

« —RIbRE, EMMCRMBRRARGRXEfE, EEEIEG
« EHEGBEKBERENERL RIS, mIBEGHER, FEETINNEG
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sl Perfusion FMRI Modelling

JEEMRI B
*Timeseries alternates between "control" (up) and "tag" (down)
* Activation seen as modulation of control-tag difference
*There are two GLM approaches available in FEAT:

o BIEFII#E “control” (B L) F“tag” (ATF) ZiEEDik
o HIEHEBEMNIEHtagEFAET
* EFEATHEMMGLMIT AR -
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sl Perfusion FMRI Modelling

EEMRI E24E
*Timeseries alternates between "control" (up) and "tag" (down)
* Activation seen as modulation of control-tag difference
*There are two GLM approaches available in FEAT:
o WEFSIE control” (L) M“tag” (ATF) ZEYIR; BUEKEMAIEHIagZERAIET; EFEATREMMGLMA AR A:
|) Pre-subtract data (using sinc interpolation) FGHAE (fEMsinciElE)

First-level analysis Full analysis

Misc | Data Pre-stats Stats | Post-stats | Registration

Motion correction:  MCFLIRT
BO unwarping
Slice timing correction:  MNone

BET brain extraction |
Spatial smoothing PYHM {mm}) |S :7

Intensity normalization

Temporal filtering | Perfusion subtraction |~ First timepoint is tag )ighpaﬁs © Lowpass

MELODIC ICA data exploration

Go Save Load Exit Help Utils
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FMRIS Perfusion FMRI Modelling

JEEMRI B
*Timeseries alternates between "control" (up) and "tag" (down)
* Activation seen as modulation of control-tag difference
*There are two GLM approaches available in FEAT:

o WEFSIE control” (L) M“tag” (ATF) ZEYIR; BUEKEMAIEHIagZERAIET; EFEATREMMGLMA AR A:

|) Pre-subtract data (using sinc interpolation) 2) Use full model of unsubtracted data
BHBERIE ([EMsinciEME) PO —

First-level analysis —‘l Full analysis —‘l

Misc | Data Pre-stats | Stats | Post-stats | Registration |

Motion correction:  MCFLIRT —4|

BO unwarping 1
Slice timing correction:  MNone - |
BET brain extraction |~

Spatial smoothing FWHM {mm ) |5 —

Intensity normalization__{

Temporal filtering { Perfusion subtraction |~ First timepoint is tag - I)ighpass I© Lowpass i

MELODIC ICA data exploration 1

Go | Save | Load Exit | Help Utils
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Simultaneous BOLD and Perfusion
FMRI Modelling

BOLD F1 j&3FfMRI [EIAT &

* Dual-echo sequences commonly used to extract BOLD and
perfusion changes simultaneously

* Traditionally, separate analysis of low TE (for perfusion) and high
TE (for BOLD) results in biased results

* XREIKFFEERTERIEIBOLDMIETEMN
o B4L, XMRTE (BF) FISTE (BOLD) MEMOMRSHERENESR
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Simultaneous BOLD and Perfusion
FMRI Modelling

BOLD F1 j&3FfMRI [EIAT &

* Dual-echo sequences commonly used to extract BOLD and

perfusion changes simultaneously
* Traditionally, separate analysis of low TE (for perfusion) and high

TE (for BOLD) results in biased results
M

* XREIKFFEERTERIEIBOLDMIETEMN
o fREL, WRTE (EX) MSTE (BOLD) NBMHHE &ﬁﬂ*‘%ﬂ’]

* FABBER uses nonlinear

simultaneous modelling of both TEs

to give uncontaminated, more

sensitive information l

FABBER{ER M M TERVIF L M BT BAEFIR MR RN, B
BURRIER

. i

R




-was Orthogonalisation - A cautionary tale
ER——TER
® You are running a study to see what parts of the brain are

less active when performing a task in patients with the

neurodegenerative disease “Syndrome X”
o MEEREERR XGEITIIHSRITIERREBERNITESH, KEMAPLEERD A KER,

In particular you want to know in what areas the activity is
proportional to the duration of the disease (DoD)

1557 R AR BRI E ML AN X AR S IR RAYIFEERTE] (DoD) ARIELE

mean DoD

So you set up a design where you
model the activation as a linear function
of DoD (and a mean)

FRUAMREZBIL T —Mixit, ERUEIENDoDRIEIMEREL (MMR—1MFI9E) B




FMF?IB

« MEEREEREXEE

Orthogonallsatlon A cautionary tale

EX—

You are running a study to see what parts of the brain are
less active when performing a task in patients with the

neurodegenerative disease “Syndrome X”
EBITHRAEENTESH, RIRAIMLERD AKIERK.

(A EEE 23

In particular you want to know in what areas the activity is

proportional to the duration of the disease (DoD)
1557 R AR BRI E ML AN X AR S IR RAYIFEERTE] (DoD) ARIELE

BOLD signal

0.3

mean DoD

09—

1

10

Subject #

20

—MARIEIE XY

30

And in one voxel the data happens to
look like this



|
~

FMQIB‘ Orthogonalisation - A cautionary tale
ER——TER
® You are running a study to see what parts of the brain are

less active when performing a task in patients with the

neurodegenerative disease “Syndrome X”
o MEEREERR XGEITIIHSRITIERREBERNITESH, KEMAPLEERD A KER,

® |n particular you want to know in what areas the activity is

proportional to the duration of the disease (DoD)
1557 R AR BRI E ML AN X AR S IR RAYIFEERTE] (DoD) ARIELE

09—

o

Q0

S

o
BOLD signal

0.3

Subject #

And this is the model fit to the data. You are very
men DoD  pleased with yourself. REARIBIEL, (MRHE,




FM;,B. Orthogonalisation - A cautionary tale

ERXR—PER

® In particular you want to know in what areas the activity is

proportional to the duration of the disease (DoD)
41%UE{E*E%DJET‘I]EB“HLII:E’J/EEU‘i%iFE’J?—*: Fh[E] (DoD) FYIELEL

0.9

A different way of looking
at )’OUI‘ data — BB IROE

Subject # 09

0.3
1

<«use as x-value _ L ,¢
\g.> P ‘0‘ ¢
7 " X
9 0.6 ’s 2, ;&
¢
0.808 o . e
0
—0.005

0.3 ' : : ‘ ' '
0 10 20 30 40 50 60 70
Duration of Disease

mean



FM;,B. Orthogonalisation - A cautionary tale

ERXR—PER

® In particular you want to know in what areas the activity is

proportional to the duration of the disease (DoD)
17 AR BRI E ML AN X AR SN S IR RAYFEERTE] (DoD) ARIELE

0.9

use as y-value —=; &g = B,
o L A different way of looking
o P at your data
Subject # 09 : . . . .

<use as x-value e

1-0.005

BOLD signal

0.3 ' : * ' *
0 10 20 30 40 50 60 70
Duration of Disease

mean

And at your model fit  srimpzneEs
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FM*,S}'B.** Orthogonalisation - A cautionary tale

mean

ERX—1E&R
In particular you want to know in what areas the activity is
proportional to the duration of the disease (DoD)

1551 2 AR AE A E ML AN X AY7E ) S5 IR IR AT EEATE] (DoD) AXIELE
Then someone points out that we all suffer from a

neurodegenerative disease called “life”
BAEREMNBEBE I E BB ZRITIERR

So you complement your design with

FOMRR (RSB FRIEHEIEIET
an (unlnterestlng) age regressor .o

| ETH — 0.9
]

%:@

o0 e And the model fit still looks good
(maybe even a little better) BRIERREART (HELLZHITH)

BOLD signal

0.3 ' ' '
1 10 20 30
Subject #
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FMR,B# Orthogonalisation - A cautionary tale
ERX—1E&R
® |n particular you want to know in what areas the activity is

proportional to the duration of the disease (DoD)
1551 2RI RE ML AN X AR 5 IR TR AT EERTE) (DoD) AXIELE

® Then someone points out that we all suffer from a

neurodegenerative disease called “life”
BAREETAER B — MO Lo R MR BRITIE AR

[0 | O] And you test your DoD for significance

MK DoDY EE 14

0.9

t=0.11

BOLD signal

0.3 ' ' :
1 10 20 30
Subject #

What on earth just happened!?

mean DoD age BETHA?
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FMR,B# Orthogonalisation - A cautionary tale
ERX—1E&R
® |n particular you want to know in what areas the activity is

proportional to the duration of the disease (DoD)
1551 2 AR AE A E ML AN X AY7E ) S5 IR IR AT EEATE] (DoD) AXIELE

® Then someone points out that we all suffer from a

neurodegenerative disease called “life”
BABELBEMNBEBE ML BB RITIERR

| ] s it that age explains everything?

EEHRRREE T — I8
0.9
|

39 10 et # 20 30
ubjec
No, not all of it. So what happened!?

mean DoD  age LURTZELE, BERELEE

BOLD signal




_ Bl Orthogonalisation - A cautionary tale
ER—ETR
® Remember how we have been saying “GLM tests for a
regressor after it has explained as much as it possibly can

using the other regressors”7 AI7HE ST FEE R R B R T RIS NER Y /S, BX—
D EYIE FHITGLMIGE”

® But what does that really mean?

RERZHTLAER
0]

-k

FHH - HE

mean DoD ag DoD mean ag

The regressor we want
Full model S “The other regressors”
2 to test EEmmEART Y-
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mé}é‘-"’” Orthogonallsatlon A cautionary tale

EX—

® Remember how we have been saying “GLM tests for a
regressor after it has explained as much as it possibly can
using the other regressors”? wrisueeapansesTRTEsNER2E, BY—

M EYVAREFH#HITGLMIEIE”

® o, lets use “the other regressors” to explain these data

mean ag

“The other

b

regressors
HthE)3IEF

BOLD signal

, EBATAR EARETRE T AR X

0.9

o
o
T

0.3

10 20 30
Subject #
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-was Orthogonalisation - A cautionary tale
F——MER
® Remember how we have been saying “GLM tests for a
regressor after it has explained as much as it possibly can
using the other regressors”! wremvsemsrarsrETRIEsNERE, BY—

N EVIEF #HITGLMIRIS”

® o, lets use “the other regressors” to explain these data
AL, LR A B EIE 7 R EFRFIX L LR

0.9

BOLD signal

v
=
E

1 10 20 30
Subject #

mean

“ h
The ot er By fitting them to the data
regressors

RENSEE
HthE)3IEF
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09—

BOLD signal

0.3

2
o
T

Orthogonalisation - A cautionary tale
ER——TER
Remember how we have been saying “GLM tests for a
regressor after it has explained as much as it possibly can

using the other regressors”? wrisueeapansesTRTEsNER2E, BY—
P EYFEFH#ITGLMIRTE”

And what is left is the “unexplained” part
T TEBER B EM 2

oI ¢ IUneprained

& < ToIEIRRR

N\

10 20 30 “Explained”
Subject #
up to here
A ARERRIXE
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-was Orthogonalisation - A cautionary tale
F——ER
® Remember how we have been saying “GLM tests for a
regressor after it has explained as much as it possibly can
using the other regressors”?! Wiz aERLEEARERTRTRSNZHE, B

TEYAREFiF#1TGLMIRLE”

® And what is left is the “unexplained” part
’ iﬂlJ"FE’J“?EE%@%’%”E’JEB%‘%?I"A

0.9
—_— ¢
o P ¢ ¢
c - o
& £ ‘/"\/\/-;——-\/’“g;g/\—\‘,...’
S @ | e b T 3 3 T ®
()] ¢ .
1 6| ¢ L 4
O o0
(a8
0.3 : g : L 1 1
1 10 _ 20 30 1 10 20 30
Subject # Subject #

“Unexplained”

(not well represented by DoD)
“REERER” (FHE#RDoDIRIFIR)

Original and “Explanation”

[RGB W RN
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Orthogonalisation - A cautionary tale
ER——TER
Remember how we have been saying “GLM tests for a regressor
after it has explained as much as it possibly can using the other

» N7 {2 S e EREMOIRHERE T RAIESNERZE, BXY—
regressors’? EEETHCLME ’
® And the reason for all of this is that Age and DoD are correlated
X—tIRRE R FIRFIDoDZEKAY

70 :

60/ . ‘' + ® GLM says“l cannot be sure if
2% : " this explanatory power belongs
5 40} e ] .
= ¥ o 0 to you or to you. So neither
-g | . | °. Y
Bl oo OO _ can have it.

10 = ]

L ® Much like a parent would.

20 30 40 50 ing 60 70 80 90

GLMit: “BAMESZMERNERTIRER B TR, FRIAFAH
THEHEE. ” (BIRTRENHESR)
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Orthogonalisation - A cautionary tale

F——MER

So what about orthogonalisation then. What does that do!?

BLERZMCEHLA?

To orthogonalise A with B is to say to B “You, B, can have all

the explanatory power. A doesn’t get any”.
IEAFIBIERFZEXIBIR B, FIAIEMABNEREN", A—RIRE,
Let us see how we would orthogonalise Age w.r.t. DoD

IEHAB BT DDA FEURRIER L

*

|

10

Subject #

20

30

“Unexplained”
— Unique to Age

IR
R

“explains” up to here

DoD ] AfZFERIX
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F——ER
® So what about orthogonalisation then. What does that do!?

BALAERCEHLA?
® TJo orthogonalise A with B is to say to B “You, B, can have all

the explanatory power. A doesn’t get any’’.
EATIBERMEXBIR B, AINHABEMBENERN", A—RIRE,
® And this “unique” part is “Age orthogonalised w.r.t. DoD”

HApIERERARAIEN D B F R DoDIERRIE 7

70 70
* *

60 : & 60 " &
Q Q

50+ 50+
: . @ . .
5 40 . :..,”o ¥ 5 40 . *e .". o
o ¢ o
5 30 " 5 30} . o+
§ 5 0’ ¢ g " 0‘ ¢
a 20+ ¢ a5 a 20+ @ " "

¢
10+ 10+
o o*
1 0 L 1 1
20 30 40 50 60 70 80 a0 40 50 60

Age Orthogonalised Age
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2 Orthogonalisation - A cautionary tale

FMRIB
F——ER
® So what about orthogonalisation then. What does that do!?

BALAERCEHLA?
® TJo orthogonalise A with B is to say to B “You, B, can have all
the explanatory power. A doesn’t get any’’.
EATIBIERMEXBIR B, AJNBBMBEREREN", A—RRE,
® And this “unique” part is “Age orthogonalised w.r.t. DoD”

HApIERERARAIEN D B F R DoDIERRIE 7

Age L mean DoD Age mean DoD Age L
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ER——1E&T
® So what about orthogonalllsatTlon then. What does that do!?
BALAERZCBHLRA?

® TJo orthogonalise A with B is to say to B “You, B, can have all

the explanatory power. A doesn’t get any’’.
IEAMIBIERFZEIBIL B, FIAMBFIENEREN", A—REiRE,.

® And then fit DoD to the unexplained part
IEDoDIN SRR ERRRIE 7

; 1 = —7708

"

BOLD signal

DoD 3 1b éo 3,0
The regressor we . Swieet#
want to test Fitted to the unexplained part

S EIARERAOE D
BEZNETEF
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FM,;;,'B.‘% Orthogonalisation - A cautionary tale
ER——1E&T
® So what about orthogonalllsatTlon then. What does that do!?
BALAERZCBHLRA?

® To orthogonalise A with B is to say to B “You, B, can have all

the explanatory power. A doesn’t get any’’.
IEAMIBIERFZEIBIL B, FIAMBFIENEREN", A—REiRE,.

® And then fit DoD to the unexplained part
IEDoDIN SRR ERRRIE 7

e . . g
Or viewedin &
the other way 2
HEAR—MAREE o
DoD 0.3 L ' ' \ . )
0 10 20 30 40 50 60 70

Duration of Disease

Fitted to the unexplained part
S EIARERAOE D

The regressor we

want to test
EERMEERT
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m&;’.e ‘A better alternative to orthogonalisation
KB ERWNEFNG A

® Look at the results of F-tests on the combined effects:
E— NP RFXERNAIFEIGAIE R

o mean + DoD + age i9fEDoD+a

® DoD +age (as DoD and age are demeaned)
DoD+FiR (RAMEEZREIYENL)

® Plus the t-test on the desired effect: DoD iexpopitsTias

t-test F-tests
[1 00] mO
(01 0] (01 0] B m
(00 1] B m
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-vas A better alternative to orthogonalisation
t-test KB ERNEHFNAE F-teStS

T3S FRL0

-L; [100] mO

[0 1 0] “eet [0 1 0] H @

mean DoD mean DoD ag

Results: ==
Not significant === Both significant #a=

Interpretation: Significant correlation with both DoD and age, but
cannot separate the effects as they are too highly correlated and the

response to unique portions (if any) are too weak.
772 SDoDMERHAE EZERAXNY, EREETMOT, AANENNAXMERS, IBEFEs (MRERE) NRNAS,

Follow on: to separate effects could potentially recruit new subjects

such that DoD and age were less correlated.
NTDBERR, FIESHBSMAEIL, XAFDoDMELRIIERMEMEN,




FM;,'B Orthogonalisation - A cautionary tale

® So what has orthogonalisation done for us!?
ABAIEZ L RERNBAT AT 42

® When we orthogonalised DoD with Age we took all the

explanatory power that was shared/common to Age and
DoD and put all of it with DoD.

HIGDoD S FIRIERAY, KFFE S FIRTIDoDHZ/HERIEERES, EEPRLDOD,

® This gave a highly significant effect of DoD

X{EDoDFAE T Ik E B ENFNT

® But was this a good thing to do!?
BXEHFEL?

® No! There is nothing in our data that allows us to say if the
effect came from Age or Disease Duration.We have just

made an arbitrary decision to attribute it to Disease

Duration. T &tEs, aEEasEESHEnEREEREE0eD, HIMMT — 5l
HIRTE, ANERDOD

® GLM did the right thing by saying:“l don’t know who this

belongs to, so | can’t give it to either”
gmiifFad: “FAEXZEN, FRAF R aELAM,
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®

®

®

®

B b, HARIT XL,
PRIABALTSZNE EATRIER X

RE:

Orthogonalisation - A cautionary tale

But was this a good thing to do? EX——T&R

BIX S 1FENE?
No! There is nothing in our data that allows us to say if the
effect came from Age or Disease Duration.VWe have just

made an arbitrary decision to attribute it to Disease

Duration. T EHIER, REEIRREESHEINER A ERTEDD, BT — il
HIRE, IANERDoD

GLM did the right thing by saying:“l don’t know who this

belongs to, so | can’t give it to either”
gmiZfFxy: “BAEXZ N, FRAF A geL A,
And in fact | simulated these data, so | happen to know that

the causality was:




When to orthogonalise!?
AR e ER?
ESSENTIALLY NEVER: The GLM automatically deals with

correlations between regressors in a conservative manner.
RETEMEAREE: gmBA—HRFRIS T BB E)IE 2 BRIEXE.
®  We generally cannot be certain which of two

correlated regressors contributes to BOLD signal

effects. e.g. head motion or task?
BETARER TMEXEVIRERF I — = FEBOLDIANL, FI40, KERIEENTIESS?

Orthogonalisation may make sense in certain models where
causality is unambiguous.
ARLERARXARPHRESD, ERXAEEEREXM,

® | challenge someone to give me an unambiguous example.
£330 T EPACTIE 24N g EH =1 ST/

® However, it is usually still clearer to conduct the
appropriate F-tests and t-tests and interpret these results
since all the information is there. It generally isn’t
necessary or safe to arbitrarily force explanatory power

with orthogonalisation.
Am, HTAANEREEIE, EERFEEATESNLINM-RNHARRXELSR, BERAT, BLE
REBTHERETNDEFFRER,
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EVMRIB'
Design
matrix

gitERE
/1 0 r1\
10r ?3‘
10rs BG1
01r, ;2
0 1I3 o
\p 1I%/

BOLD Contrast

Demeanin

E91E
What does the fitted Contrast
model look like?
ISR T JEE
[1 -1 0]
[0 0 1]
[100]
Same ASIo 'e in-v or
P [010]

both groups
PRAA AR AR ]

mumford.fmripower.org/
mean_centering/

Does
demeaning Demeaning
change the
AERZET 91E?
GUTERA =
NO YES
NO YES
YES



’ mumford.fmripower.org/

J\' { - 1 ing/
Demeaning ;="

Design What does the fitted Contrast dzmea"i'r‘lg
matrix model look like? v
/ \ ]
10rn0) L [1-100] YES
10r20
10r30 §
010r| 3 [1000]
010rs]| 2 , or YES
010re | [01 00]
\ / . ————%
F Different slopes in
Ber the two groups [001-1]
Ba2 RN or
Br1 [0010] NO
Br2 Do not demean or
. within groups [000 1]

ANFREIE
Demean all values

and then solit into YES”* =it is probably better to do it,
P although these contrasts are VERY

roups . .
g P hard to interpret either way
RATRBIEALE, RO BIPHTEROG, BARLE LR AR



